IPv4

વિકિપીડિયાથી
આના પર જાવ: ભ્રમણ, શોધો

ઈન્ટરનેટ પ્રોટોકોલ આવૃત્તિ ૪ (IPv4) ઈન્ટરનેટ પ્રોટોકોલ(IP)ની ચોથી આવૃત્તિ છે અને IPની સૌપ્રથમ આવૃત્તિ છે જેને વ્યાપક જમાવટ કરી છે. IPv6 સાથે મળીને તેઓ (IPv4 અને IPv6) ઈન્ટરનેટના મૂળભૂત માળખાના અભિન્ન અંગ બન્યા છે. આજે પણ ઈન્ટરનેટનો મોટેભાગેના ટ્રાફિકની હેરફેર IPv4ની મદદથી થાય છે. [૧] IETF પ્રકાશિત RFC 791 (સપ્ટેમ્બર ૧૯૮૧) માં IPv4ને વર્ણવેલું છે, જેણે આગાઉના RFC 760 (જાન્યુઆરી ૧૯૮૦) ને બદલી નાખ્યું. IPv4એ જોડાણરહિત પ્રોટોકોલ છે જેનો પેકેટ-સ્વીચડ લીંક-લેયર નેટવર્કો પર ઉપયોગ થાય છે. (દા.ત. ઇથરનેટ). તે શ્રેષ્ઠ પ્રયાસ વિતરણ (Best Effort Deliviery) મોડેલ પર કાર્ય કરે છે, પણ તેમાં ડીલેવરીની બાહેધરી કે તેના પેકેટોના યોગ્ય ક્રમની કે પેકેટોના નકલ અટકાવવા કોઈપણ સુવિધા આપતું નથી. આ ડેટા સંકલીતતા સહીતના આ પાસાઓ તેની ઉપર રહેલા સ્તરના ટ્રાન્સપોર્ટ પ્રોટોકોલ જેવાકે ટ્રાન્સમિશન કંટ્રોલ પ્રોટોકોલ (TCP) પાસે છે.

એડ્રેસિંગ (સરનામાંલેખન)[ફેરફાર કરો]

IPv4 એડ્રેસ પ્રણાલીમાં તેના એડ્રેસો ૩૨ બીટના હોય છે અને તેઓ શક્ય એટલા અનન્ય ૪૨૯૪૯૬૭૨૯૬ (૨૩૨) એડ્રેસો ધરાવે છે. IPv4એ તેના કેટલાક એડ્રેસોને ચોક્કસ હેતુઓ (જેમકે અંગત નેટવર્ક માટે ~૧૮ મિલિયન એડ્રેસો કે મલ્ટીકાસ્ટ એડ્રેસો (~૨૭૦ મિલિયન)) માટે અનામત કર્યા છે.

ડોટ-દશાંશ પધ્ધતિ દ્વારા IPv4 એડ્રેસનું વિઘટન

વધતા જતા ઈન્ટરનેટ ઉપયોગથી IANA અને RIR દ્વારા સ્થાનિક ISPને અપાતા IPv4ના બાકી રહેલા એડ્રેસોમાં સતત ઘટાડો થાય છે આ ઘટનાને IPv4 એડ્રેસની થકાવટ તરીકે ઓળખાય છે. ૩ ફેબ્રુઆરી ૨૦૧૧ના રોજ પાંચ RIRને છેલ્લા પાંચ બ્લોકની વહેચણી થતા IANAના પ્રાથમિક એડ્રેસ પૂલમાં એડ્રેસો ઘટી ગયા હતા. [૨][૩] ૧૫ એપ્રિલ ૨૦૧૧ ના રોજ APNIC નામના RIR પાસે પોતાના પ્રાદેશિક IP ભંડોળના IP ઘટ્યા હતા, [૪] આ IPv4 માં થયેલ IP ને ઘટને પૂરી પાડવા ૧૯૯૦માં વિકાસ પામેલા IPv6 નું ૨૦૦૬થી વ્યપારીધોરણે વિસ્તારીકરણ કરી રહેલ છે.

એડ્રેસની રજૂઆત[ફેરફાર કરો]

IPv4ના એડ્રેસો પ્રમાણભૂત રીતે ડોટ-ડેસીમલ પધ્ધતિથી લખવામાં(દર્શાવામાં) આવે છે, જેમાં ચાર દશાંશ (Decimal) સંખ્યાઓ (જેનો વિસ્તાર ૦ થી ૨૫૫ વચ્ચે) ટપકા (ડોટ) વડે અલગ પડેલ હોય છે. દા.ત. 172.16.254.1. એડ્રેસનો દરેક એક ભાગ ૮ બીટ્સ (ઓક્ટેટ)ને દર્શાવે છે. તકનીકી લખાણ અને અમુક કિસ્સાઓમાં IPv4ને વિવિધ રીતે એટલેકે હેક્ક્ષાડેસીમલ, ઓક્ટેલ કે બાઈનરી સ્વરૂપે પણ પ્રદશિત કરાય છે. બીજી રીતે કહીએતો, આ IP એડ્રેસો વૈશ્વિક રીતે અનન્ય હોય છે. IP એડ્રેસમાં ૩૨ બીટ્સ ની માહિતી રહેલી હોય છે. આ બીટ્સ ચાર વિભાગમાં વહેચાયેલા જેને ઓક્ટટ કે બાઈટ કહી શકીએ. જેને નીચે મુજબ જુદી જુદી રીતે દર્શાવી શકીએ. [૫]

દર્શાવવાની રીત કિમંત ડોટ-દશાંશ માં રૂપાંતરણ
ડોટ-દશાંશ ૧૯૨.૦.૨.૨૩૫
ડોટ-હેક્સાડેસીમલ 0xC0.0x00.0x02.0xEB દરેક ઓક્ટેટ અલગથી હેક્સાડેસીમલમાં ફેરવ્યો છે.
ડોટ ઓકટલ ૦૩૦૦.૦૦૦૦.૦૦૦૨.૦૩૫૩ દરેક ઓક્ટેટ અલગથી ઓક્ટલમાં ફેરવ્યો છે.
હેક્સાડેસીમલ 0xC00002EB ડોટ હેક્સાડેસીમલ એડ્રેસમાંથી ડોટ કાઢીને બધા ઓકટેટ સાથે કરાયા છે.
ડેસીમલ ૩૨૨૧૨૨૬૨૧૯ ૩૨-બીટ સંખ્યાને દશાંશમાં દર્શાવ્યા છે.
ઓક્ટલ ૦૩૦૦૦૦૦૦૧૩૫૩ ૩૨-બીટ સંખ્યાને ઓક્ટલમાં દર્શાવ્યા છે.

ફાળવણી[ફેરફાર કરો]

ઈન્ટરનેટ પ્રોટોકોલના શરૂવાતી વિકાસ દરમિયાન, [૬] નેટવર્ક વ્યવસ્થાપકો IP એડ્રેસનું બે ભાગમાં અર્થઘટન કરતા હતા : નેટવર્ક નંબર વાળો હિસ્સો અને હોસ્ટ નંબર વાળો હિસ્સો. એડ્રેસમાં રહેલું સૌથી મોટા ક્રમ વાળું ઓક્ટેટ (અત્યંત નોધપાત્ર આઠ બીટ્સ) નેટવર્ક નંબર તરીકે નિયુક્ત થતું અને બાકી રહેલા બીટ્સ બાકી ફિલ્ડ કે હોસ્ટ ઓળખકર્તા તરીકે ઓળખાતા અને નેટવર્કમાં હોસ્ટને નંબર આપવા માટે વાપરતા. આનાથી મહતમ ૨૫૬ નેટવર્કો બનાવી શકતા.

આ પ્રારંભિક પદ્ધતિ ટૂંક સમયમાં વધારાના વિકસિત કે હયાત પહેલેથી નેટવર્ક નંબર દ્વારા નિયુક્ત નેટવર્ક્સ સ્વતંત્ર હતા નેટવર્ક તરીકે અપૂરતી સાબિત થયા હતા. ૧૯૮૧માં, ઈન્ટરનેટ સંબોધન સ્પષ્ટીકરણ વર્ગપૂર્ણ નેટવર્ક સ્થાપત્ય ની રજૂઆત સાથે સુધારવામાં આવી હતી. [૭]

વર્ગપૂર્ણ નેટવર્કની ડીઝાઇનની અલગ-અલગ નેટવર્કોની મોટી સંખ્યામાં સોંપણી ઉપરાંત સૂક્ષ્મપ્રકારની ઉપનેટવર્ક ની ડીઝાઇનને પણ મંજૂરી આપે છે. IP એડ્રેસના સૌથી નોધપાત્ર ઓક્ટેટ ના પ્રથમ ત્રણ અક્ષરો એડ્રેસના વર્ગ તરીકે વ્યાખ્યાયિત કરાયા હતા. સાર્વત્રિક યુંનીકાસ્ટ એડ્રેસિંગ માટે ત્રણ વર્ગો (A,B અને C)ને વ્યાખ્યાયિત કરાયા. વર્ગોની તારવણીના આધારે, નેટવર્કની ઓળખ સંપૂર્ણ એડ્રેસના ઓક્ટેટ સીમા સેગ્મેન્ટો પર આધારિત હતા. દરેક વર્ગ નેટવર્ક ઓળખ ઓક્ટેટમાં ક્રમશ: વધારો કરે છે આથી આગળના વર્ગો (B અને C) માં હોસ્ટની સંખ્યા ઘટતી જાય છે. નીચેનું કોષ્ઠક જૂની પ્રણાલીની ઝાંખી આપે છે.

ઐતિહાસિક વર્ગપૂર્ણ નેટવર્ક સ્થાપત્ય
વર્ગ સરનામાંના મુખ્ય બીટ્સ (બાયનરી) પહેલા ઓક્ટેટનો વિસ્તાર (દશાંશ) નેટવર્ક ID ફોર્મેટ હોસ્ટ ID ફોર્મેટ નેટવર્કોની સંખ્યા નેટવર્ક દીઠ એડ્રેસોની સંખ્યા એપ્લીકેશન
A ૦-૧૨૭ a b.c.d = ૧૨૮ ૨૪ = ૧૬ ૭૭૭ ૨૧૬ યુંનીકાસ્ટ
B ૧૦ ૧૨૮-૧૯૧ a.b c.d ૧૪ = ૧૬ ૩૮૪ ૧૬ = ૬૫ ૫૩૬ યુંનીકાસ્ટ
C ૧૧૦ ૧૯૨-૨૨૩ a.b.c d ૨૧ = ૨ ૦૯૭ ૧૫૨ = ૨૫૬ યુંનીકાસ્ટ
D ૨૬૮,૪૩૫,૪૫૬ મલ્ટીકાસ્ટ
E ૨૬૮,૪૩૫,૪૫૬ અનામત

વર્ગપૂર્ણ નેટવર્ક ડીઝાઇન ઈન્ટરનેટના શરૂવતી તબક્કામાં સેવા આપી પરંતુ, ૧૯૯૦માં નેટવર્કમાં થયેલ ઝડપી વિસ્તરણને કારણે આ ડીઝાઇને વધુ સરનામાંની જરૂર પડી. આ સરનામાઓને સમાવવા માટે ઈ.સ. ૧૯૯૩માં ક્લાસલેસ ઇન્ટર-ડોમેન રાઉંટીંગ (CIDR) નામની પદ્ધતિએ વર્ગપૂર્ણ નેટવર્ક ડીઝાઇનનું સ્થાન લીધું. વેરીએબલ-લેન્થ સબનેટ માંસ્કીંગ (VLSM) પર આધારિત આ CIDR IP એડ્રેસોની લંબાઈને ઈચ્છાધિન રીતે વધારી ઘટાડી આપે છે. આજે, વર્ગપૂર્ણ નેટવર્કોના અવશેષો માર્યાદિત માત્રામાં જોવા મળે છે. CIDRના અધિક્રમિક(Hierarchical) માળખાનું વ્યવસ્થાપન ઈન્ટરનેટ એસાઈન નંબર્સ ઓર્થોરીટી (IANA) અને રીજીઓનલ ઈન્ટરનેટ રજીસ્ત્રિ (RIRs) કરે છે. દરેક RIR જાહેરમાં શોધી શકાય તેવા ડેટાબેઝ WHOISનું વ્યવસ્થાપન કરે છે જે (ડેટાબેઝ) માં IP સરનામાની સોંપણી વિશેની જાણકારી જાળવી રાખી હોય છે.

ખાસ ઉપયોગ માટેના IPv4 સરનામાં[ફેરફાર કરો]

આરક્ષિત IPv4 એડ્રેસો
શ્રેણી વર્ણન સંદર્ભ
૦.૦.૦.૦/૮ વર્તમાન નેટવર્ક (માત્ર સ્ત્રોત સરનામાં તરીકે માન્ય) RFC 5735
૧૦.૦.૦.૦/૮ અંગત નેટવર્ક RFC 1918
૧૦૦.૬૪.૦.૦/૧૦ શેર્ડ એડ્રેસ સ્પેસ RFC 6598
૧૨૭.૦.૦.૦/૮ લૂપબેક RFC 5735
૧૬૯.૨૫૪.૦.૦/૧૬ લોકલ લીંક (AIPA દ્વારા મળતા એડ્રેસો) RFC 3927
૧૭૨.૧૬.૦.૦/૧૬ અંગત નેટવર્ક RFC 1918
૧૯૨.૦.૦.૦/૨૪ IETF પ્રોટોકોલ સોપણીઓ RFC 5735
૧૯૨.૦.૨.૦/૨૪ TEST-NET-1, દસ્તાવેજ અને ઉદાહરણો RFC 5735
૧૯૨.૮૮.૯૯.૦/૨૪ IPv6 થી IPv4 પુન:પ્રસારણ (Relay) RFC 3068
૧૯૨.૧૬૮.૦.૦/૧૬ અંગત નેટવર્ક RFC 1918
૧૯૮.૧૮.૦.૦/૧૫ નેટવર્ક બેંચમાર્ક પરિક્ષણ RFC 2544
૧૯૮.૫૧.૧૦૦.૦/૨૪ TEST-NET-2, દસ્તાવેજ અને ઉદાહરણો RFC 5737
૨૦૩.૦.૧૧૩.૦/૨૪ TEST-NET-3, દસ્તાવેજ અને ઉદાહરણો RFC 5737
૨૨૪.૦.૦.૦/૪ IP મલ્ટીકાસ્ટ RFC 5771
૨૪૦.૦.૦.૦/૪ અનામત RFC 1700
૨૫૫.૨૫૫.૨૫૫.૨૫૫ પ્રસારવું (Broadcast) RFC 919

અંગત નેટવર્ક[ફેરફાર કરો]

IPv4માં મળતા આશરે ૪ અબજથી વધારે એડ્રેસોમાંથી ત્રણ શ્રેણી ના એડ્રેસોને અંગત નેટવર્ક માટે અનામત રખાયા છે. આ શ્રેણીઓ અંગત નેટવર્કની બહાર (ઈન્ટરનેટ પર) ડેટા ટ્રાફિક રાઉટ કરવા સક્ષમ નથી અને આવા એડ્રેસો ધરાવતા નેટવર્ક ઉપકરણો ઈન્ટરનેટ સાથે સીધી રીતે જોડી શકતા નથી. તે માટે તેઓ NAT (નેટવર્ક એડ્રેસ ટ્રાન્સલેશન) જેવી તકનીકોનો ઉપયોગ કરાય છે.

નીચે આપેલ કોષ્ઠકમાં આવી ત્રણ શ્રેણીઓ અંગત નેટવર્ક માટે અનામત છે. (RFC 1918)

નામ એડ્રેસ વિસ્તાર એડ્રેસોની સંખ્યા વર્ગપૂર્ણ વર્ણન મહત્તમ CIDR બ્લોક
૨૪ બીટ બ્લોક ૧૦.૦.૦.૦ – ૧૦.૨૫૫.૨૫૫.૨૫૫ ૧૬ ૭૭૭ ૨૧૬ A વર્ગ નો એક ૧૦.૦.૦.૦/૮
૨૦-બીટ બ્લોક ૧૭૨.૧૬.૦.૦ – ૧૭૨.૩૧.૨૫૫.૨૫૫ ૧ ૦૪૮ ૫૭૬ B વર્ગના ૧૬ સલગ્ન બ્લોક ૧૭૨.૧૬.૦.૦/૧૨
૧૬-બીટ બ્લોક ૧૯૨.૧૬૮.૦.૦ - ૧૯૨.૧૬૮.૨૫૫.૨૫૫ ૬૫ ૫૩૬ C વર્ગના ૨૫૬ સલગ્ન બ્લોક ૧૯૨.૧૬૮.૦.૦/૧૬

વર્ચ્યુઅલ પ્રાઈવેટ નેટવર્ક (VPN)[ફેરફાર કરો]

જે પેકેટો પોતાના નિર્દષ્ટ સ્થાન માટે અંગત સરનામાં ધરાવતા ધરાવતા હોય ત્યારે તેવા પેકેટો જાહેરમાં (ઈન્ટરનેટ પર) રાઉટ થઇ શકતા નથી. બે અંગત નેટવર્કો (દા.ત. સંસ્થાની બે શાખાઓ) જાહેર નેટવર્કનો ઉપયોગ કરી ડેટાનું આદાન-પ્રદાન કરી શકે નહિ તે માટે આ બંને નેટવર્કોએ IP ટનલ કે વર્ચ્યુઅલ પ્રાઈવેટ નેટવર્ક (VPN) નો ઉપયોગ થાય છે. જયારે એક અંગત નેટવર્ક બીજા અંગત નેટવર્કને ઈન્ટરનેટના માધ્યમથી ડેટા મોકલવા માગતું હોય ત્યારે મોકલનાર અંગત નેટવર્ક તે ડેટાના પેકેટને પ્રોટોકોલ સ્તરમાં પ્રાવૃત(Encapsulates) કરીને તેને જહર નેટવર્ક (ઈન્ટરનેટ)માં મોકલાય છે. જયારે પેકેટ બીજા અંગત નેટવર્કમાં પહોચે ત્યારે તેના પર પ્રાવૃત થયેલ પ્રોટોકોલ સ્તરને હટાવવામાં આવે છે અને તેમાં રહેલા મૂળ પેકેટને તેના નિર્દિષ્ઠ સ્થાન સુધી મોકલવવામાં આવે છે.

વૈકલ્પિક રીતે, આ પ્રાવૃત થયેલ પેકેટો પોતાની મુસાફરી દરિમયાન એનક્રિપ્ટ (Encrypted) થઇ જાહેર નેટવર્કમાં સુરક્ષિત થઇ શકે છે.

લીંક-લોકલ એડ્રેસિંગ[ફેરફાર કરો]

RFC 5735 માં દર્શાવ્યા પ્રમાણે એક વિશિષ્ટ એડ્રેસ બ્લોક ૧૬૯.૨૫૪.૦.૦/૧૬ લીંક-લોકલ એડ્રેસિંગ માટે વપરાય છે. અંગત એડ્રેસોની જેમ આ એડ્રેસો પણ જાહેર નેટવર્કો (ઈન્ટરનેટ) પર રાઉટ થઇ શકતા નથી. આ એડ્રેસોને પ્રાથમિકતાથી જ પોતાની જાતે જ (Automatic) રૂપરેખાંકિત થવા માટે બનાવેલા હતા આથી આવા અડ્રેસોને સ્વયં રૂપરેખાંકિત એડ્રેસ કહી શકાય.આ વિશિષ્ઠતા જયારે હોસ્ટ ને સ્થાયી કે DHCP સર્વર પાસેથી IP મળતો નથી ત્યારે લીંક-લોકલ એડ્રેસિંગની મદદથી હોસ્ટનું નેટવર્કમાં જોડાણ શક્ય બને છે. હોસ્ટની ઓપરેટીંગ સિસ્ટમમાં આ વિશિષ્ઠતા હોવી જરૂરી છે. દા.ત. માઈક્રોસોફ્ટ વિન્ડોસ APIPA (Automatic Private IP Addressing) જેવી તકનીકની મદદથી એક સેગ્મેન્ટના બધા કમ્પ્યુટરોને એક બીજા સાથે જોડે છે. (આ સુયોજનામાં DHCP સર્વરની જરૂર નથી). મે ૨૦૦૫માં IETFએ Dynamic Configuration of IPv4 Link-Local Addresses માટે RFC 3927 ધોરણ બનાવ્યું.

લૂપબેક[ફેરફાર કરો]

વર્ગ A નું નેટવર્ક ૧૨૭.૦.૦.૦ (વર્ગ-વિહીન નેટવર્ક ૧૨૭.૦.૦.૦/૮) લૂપબેક માટે અનામત છે. આ નેટવર્કની કાર્યપ્રણાલી જોઈએતો, તે લૂપબેક ઇન્ટરફેસ પર વિસ્તરણ કરે છે.

  • જે IP પેકેટો ના સ્ત્રોત અને નિર્દિષ્ટ એડ્રેસો જે સરખા લૂપબેક ધરાવતા નેટવર્ક (કે ઉપનેટવર્ક) સબંધિત હોયતો તે વળીને પાછુ તેજ ઇન્ટરફેસ પર આવે છે.
  • જે IP પેકેટો ના સ્ત્રોત અને નિર્દિષ્ટ એડ્રેસો જે જુદા લૂપબેક ધરાવતા નેટવર્ક (કે ઉપનેટવર્ક) સબંધિત હોયતો તે જુદા ઇન્ટરફેસ (તે જ હોસ્ટ પર) પર આવે છે.

અંતમાં ૦ કે ૨૫૫ વાળા એડ્રેસો[ફેરફાર કરો]

ઓછામાંઓછા ૨૪ બીટ્સ ધરાવતા સબનેટ વાળા નેટવર્કો એટલે કે, વર્ગ C ના નેટવર્કો અને CIDR પૂર્વગ /૨૪ થી /૩૨ વચ્ચેના નેટવર્કો જેના અંતમાં ૦ કે ૨૫૫ નથી આવતો તેવા એડ્રેસો. વર્ગ-સભર એડ્રેસિંગને ત્રણ સબનેટમાં વહેચી શકાય : વર્ગ A : ૨૫૫.૦.૦.૦ કે /૮, વર્ગ B : ૨૫૫.૨૫૫.૦.૦ કે /૧૬, વર્ગ C : ૨૫૫.૨૫૫.૨૫૫.૦ કે /૨૪. દા.ત. સબનેટ ૧૯૨.૧૬૮.૫૦.૦/૨૫૫.૨૫૫.૨૫૫.૦ (૧૯૨.૧૬૮.૫૦.૦/૨૪) માં ૧૯૨.૧૬૮.૫૦.૦ એ સંપૂર્ણ નેટવર્ક માટે સામાન્ય રહેશે. માટે રજૂઆતમાં સંદિગ્ધતા ટાળવા માટે, ઑક્ટેટ 0 માં સમાપ્ત થતા સરનામા અનામત છે.

આપેલ સબનેટ પર રહેલા બધા ઉપકરણોના ઇન્ટરફેસ પર માહિતી પહોચાડવા જે તે નેટવર્કનો બ્રોડકાસ્ટ એડ્રેસનો ઉપયોગ કરવામાં આવે છે. સબનેટના બધા એડ્રેસો માંથી રહેલુ છેલ્લું એડ્રેસ બ્રોડકાસ્ટ એડ્રેસ છે. દા.ત. ૧૯૨.૧૬૮.૫૦.૦/૨૪ નું બ્રોડકાસ્ટ એડ્રેસ ૧૯૨.૧૬૮.૫૦.૨૫૫ છે. /૨૪ કદના નેટવર્ક માટે બ્રોડકાસ્ટ એડ્રેસ ના અંતમાં ૨૫૫ આવે છે. તેમ છતાં, ૦ અને ૨૫૫ અંત વાળો એડ્રેસ કોઈ હોસ્ટ માટે ઉપયોગમાં લઇ શકતો નથી. દા.ત. /૧૬ સબનેટ વાળું નેટવર્ક ૧૯૨.૧૬૮.૦.૦/૨૫૫.૨૫૫.૦.૦ નો વિસ્તાર ૧૯૨.૧૬૮.૦.૦ – ૧૯૨.૧૬૮.૨૫૫.૨૫૫ થાય છે.

ભૂતકાળમાં કેટલાક સોફ્ટવેર ધોરણ-વિહીન બ્રોડકાસ્ટ એડ્રેસના (જેમાં ૦ ના બદલે ૧ નો ઉપયોગ થયો હતો) ઉપયોગ કરવાથી બ્રોડકાસ્ટ અને નેટવર્ક એડ્રેસ વચ્ચે અથડામણ(Conflict) થયું હતું. [૮] /૨૪ થી નાના નેટવર્ક માટે બ્રોડકાસ્ટ એડ્રેસ ૨૫૫ થી અંત પામતો નથી. દા.ત. CIDRથી મળેલ ઉપનેટવર્ક ૨૦૧.૧૦.૧૩.૧૬/૨૮ માટે બ્રોડકાસ્ટ એડ્રેસ ૨૦૧.૧૦.૧૩.૩૧ થશે.

એડ્રેસ ઠરાવ (Resolution)[ફેરફાર કરો]

ઈન્ટરનેટ પર રહેલા સર્વર મોટેભાગે નામથી ઓળખાય છે. દા.ત. www.example.com, જેમાં તેના IPની માહિતી મળતી નથી, આ IPની મદદથી તે જે તે વેબસાઈટ પર રાઉટ થાય છે અને તેનો ઉપયોગ કરવા સક્ષમ બને છે. વેબસાઈટના નામ પરથી IP મેળવવાની રીતને Resolution કહેવાય છે. આ રીતથી એડ્રેસ પરથી વેબસાઈટનું નામ મળી શકે છે.(જો તેની વિગત હોયતો) આને આપને આપની ટેલીફોન ડિરેક્ટરીથી સાથે સરખાવી શકીએ જેમાં આપને વ્યક્તિના નામ પરથી તેનો ટેલીફોન નંબર અને ટેલીફોન નંબર પરથી વ્યક્તિનું નામ મેળવી શકીએ છે.

આ IP પરથી નામ કે નામ પરથી IP મેળવવાની ક્રિયા ડોમેન નેમ સિસ્ટમ (Domain Name System - DNS) થી થાય છે. આ DNS અનુક્રમિક, વહેચાયેલ સિસ્ટમ છે જે બીજા સર્વરોને નામની પેટા સોંપણી કરે છે.

IPv4 એડ્રેસની થકાવટ[ફેરફાર કરો]

1980 થી, દેખીતું હતું કે ઉપલબ્ધ IPv4 સરનામાંની પૂલ દર, જે શરૂઆતમાં નેટવર્ક સરનામા સિસ્ટમ મૂળ ડિઝાઇનમાં ધારણા કરવામાં આવી રહી હતી તેના કરતા તે ઝડપથી ક્ષીણ થયું. IPv4 એડ્રેસની આ થકાવટને નાથવા માટે ઉપચારાત્મક ટેકનોલોજી જેવીકે, ક્લાસફૂલ નેટવર્ક્સ ને ક્લાસલેસ ઇન્ટર ડોમેન રૂટીંગ (CIDR) પદ્ધતિઓ દ્વારા વિભાજીત કરવી, અને નેટવર્ક સરનામા ભાષાંતર (NAT) જેવી તકનીકો આવી. આખરે, IPv6 રચના થઈ છે જેમાં IPv4થી વધુ સરનામાં ઉપલબ્ધ છે.

નીચે રહેલા કેટલાક કારણોથી આ IPv4ની થકાવટને વેગ મળ્યો.

  • ઈન્ટરનેટ વપરાશકર્તાઓની સંખ્યામાં ઉત્તરોત્તર વધારો.
  • કાયમ (૨૪ કલાક) ચાલુ રહેતા નેટવર્કિંગ ઉપકરણો – ADSL મોડેમ, કેબલ મોડેમ.
  • મોબાઈલ ઉપકરણો – લેપટોપ, PDAs, મોબાઈલ ફોન વિ.

કેટલીક તકનીકો જેમણે આ થકાવટને ઓછી કરવા મદદ કરી.

  • નેટવર્ક એડ્રેસ ટ્રાન્સલેશન (NAT) – આ તકનીકની મદદથી એક જાહેર IP(Public IP)ની મદદથી કોઈ અંગત નેટવર્કને ઈન્ટરનેટ આપી શકાય છે.
  • અંગત નેટવર્કોનો ઉપયોગ
  • ડાયનેમિક હોસ્ટ કન્ફીગરેશન પ્રોટોકોલ (Dynamic Host Configuration Protocol – DHCP)
  • વેબસાઈટની નામ પ્રમાણે વર્ચ્યુઅલ હોસ્ટીંગ
  • સ્થાનિક ઈન્ટરનેટ રજીસ્ટ્રાર ને કરકસરથી પ્રાદેશિક રજીસ્ટ્રાર દ્વારા જાહેર IPની વહેચણી.

વધતા જતા ઈન્ટરનેટ ઉપયોગથી IANA અને RIR દ્વારા સ્થાનિક ISPને અપાતા IPv4ના બાકી રહેલા એડ્રેસોમાં સતત ઘટાડો થાય છે આ ઘટનાને IPv4 એડ્રેસની થકાવટ તરીકે ઓળખાય છે. ૩ ફેબ્રુઆરી ૨૦૧૧ના રોજ પાંચ RIRને છેલ્લા પાંચ બ્લોકની વહેચણી થતા IANAના પ્રાથમિક એડ્રેસ પૂલમાં એડ્રેસો ઘટી ગયા હતા. [૯][૧૦] ૧૫ એપ્રિલ ૨૦૧૧ ના રોજ APNIC નામના RIR પાસે પોતાના પ્રાદેશિક IP ભંડોળના IP ઘટ્યા હતા, [૧૧]

આ સમસ્યા ઈન્ટરનેટ પ્રોટોકોલ આવૃત્તિ ૬ ના ધોરણને સ્વીકૃતિ આપી ને કર્યો છે. IPv6 ના સરનામાંનું કદ વધારીને ૧૨૮ બીટ્સ કરાયું છે જેથી તેના દ્વારા મળતા એડ્રેસની સંખ્યા ઘણી વધારે છે. આ પ્રણાલી કોઈપણ ઉપનેટવર્કને ઓછામાંઓછા ૨૬૪ હોસ્ટ એડ્રેસ આપવાની ક્ષમતા રાખે છે. IPv4 થી IPv6 નું સ્થાનાંતરણ ચાલુ છે પરંતુ તેને સંપૂર્ણ થતા નોધપાત્ર સમય લાગે તેવું લાગી રહ્યું છે.

પેકેટનું માળખું[ફેરફાર કરો]

IP પેકેટને બે વિભાગમાં વહેચી શકાય : મથાળા-વિભાગ અને ડેટા વિભાગ

મથાળું[ફેરફાર કરો]

IPv4નું મથાળું કુલ ૧૪ ફિલ્ડ ધરાવે છે જેમાં ૧૩ ફિલ્ડ જરૂરી છે. ૧૪મી ફિલ્ડ ગૌણ છે અને તેનું નામ પણ યથાર્થ છે : ગૌણ. IP ડેટાગ્રામનું પ્રસારણ લાઈન બાય લાઈન થાય છે. એટલેકે દરેક લાઈન ૧. પહેલું પ્રસારણ ૦-૭ બીટ્સ વાળી હાર(લાઈન) ૨. પછીનું પ્રસારણ ૮-૧૫ બીટ્સ વાળી હાર(લાઈન) ૩. પછી ૧૬-૨૩ બીટ્સ અને છેલ્લે ૪. ૨૪-૩૧ બીટ્સ વળી હારનું પ્રસરણ થાય છે. આને નેટવર્ક બાઈટ ઓર્ડર (Network Byte Order) કે Big Endian Byte ordering કહેવાય છે.

IPv4 મથાળાનું બંધારણ (IPv4 હેડર ફોર્મેટ)
ઓફસેટ ઓક્ટેટ
ઓક્ટેટ બીટ ૧૦ ૧૧ ૧૨ ૧૩ ૧૪ ૧૫ ૧૬ ૧૭ ૧૮ ૧૯ ૨૦ ૨૧ ૨૨ ૨૩ ૨૪ ૨૫ ૨૬ ૨૭ ૨૮ ૨૯ ૩૦ ૩૧
આવૃત્તિ IHL DSCP ECN કુલ લંબાઈ
૩૨ ઓળખ ફ્લેગ્સ ફ્રેગ્મેન્ટ ઓફસેટ
૬૪ TTL પ્રોટોકોલ હેડર ચેકસમ
૧૨ ૯૬ સ્ત્રોત IP એડ્રેસ
૧૬ ૧૨૮ ગંતવ્ય IP એડ્રેસ
૨૦ ૧૬૦ ગૌણ (જો IHL>૫)
પેલોડ
આવૃત્તિ 
IP પેકેટની સૌપ્રથમ અને ચાર-બીટ ધરવતી ફિલ્ડ છે. IPv4 માટે તેનું મુલ્ય ૪ છે (આથી જ IPv4 નામ આપ્યું છે)
ઈન્ટરનેટ હેડર લંબાઈ (Internet Header Length – IHL) 
૪ બીટ્સ વાળી આ બીજી ફિલ્ડ હેડરમાં ૩૨-બીટ વર્ડ્સની સંખ્યા છે. IPv4ના હેડર કદાચ ચલ સંખ્યા વાળા વિકલ્પો સમાવી શકે છે કારણકે, આ ફિલ્ડ હેડરનું કદ સ્પષ્ટ કરે છે. આ ફિલ્ડની ન્યુનતમ કિમંત ૫ (RFC 791 પ્રમાણે) છે, જેની લંબાઈ ૫X૩૨=૧૬૦ બીટ્સ = ૨૦ બાઇટ્સ થાય. તેની મહત્તમ કિમંત ૧૫ વર્ડ્સ એટલેકે, ૧૫ X ૩૨ = ૪૮૦ બીટ્સ = ૬૦ બાઇટ્સ છે.
વિવિધ સેવાઓના કોડ પોઈન્ટ (Differentiated Services Code Point – DSCP) 
મૂળભૂત રીતે સેવા ક્ષેત્ર પ્રકાર તરીકે વ્યાખ્યાયિત, તો આ ક્ષેત્ર હવે વિવિધ સેવાઓ (DiffServ) માટે RFC 2474 દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે. આજની નવી તકનીકોમાં રીયલ-ટાઈમમાં ડેટાનું સ્થાનાંતર ખુબજ જરૂરી બન્યું છે તેમાટે DSCP ફિલ્ડનો ઉપયોગ થાય છે. દા.ત. વોઈસ ઓવર IP (VoIP) અવાજના ડેટાના એક્ષ્ચેન્જ માટે વપરાય છે.
(ડેટાની) સ્પષ્ટ ગીચતા સૂચક (Explicit Congestion Notification – ECN) 
આ ફિલ્ડ RFC 3168 પર વ્યખાયિત છે અને પેકેટોને ગુમાવ્યા વગર નેટવર્ક કન્જેશનની સુચના નેટવર્કમાં એક છેડા થી બીજા છેડા (End-to-End) સુધી મોક્લવાની પરવાનગી આપે છે. ECN એક વૈકલ્પિક સેવા છે જે નેટવર્ક ના છેવાળાના બંને બિંદુઓ (રાઉટર કે હોસ્ટ) ECN ને ટેકો આપતા હોયતો આનો ઉપયોગ કરી શકાય છે. આ ECN અંતર્ગર્ત નેટવર્કના આધારથી અસરકારક બને છે.
કુલ લંબાઈ 
૧૬ બીટ વાળી ફિલ્ડમાં આખા પેકેટ (ફ્રેગ્મેન્ટ – ટુકડા)નું કદ વ્યાખ્યાયિત હોય છે, જેમાં હેડર અને ડેટા બાઈટમાં હોય છે. પેકેટની ન્યુનતમ લંબાઈ ૨૦ બાઇટ્સ (૨૦ બાઈટ હેડર + ૦ બાઇટ્સ ડેટા) અને મહત્તમ લંબાઈ ૬૫,૫૩૫ બાઇટ્સ – મહત્તમ ૧૬-બીટ વર્ડ વાળી કિમંત. સૌથી મોટા ડેટાગ્રામને ફરીથી બાંધવા કોઈપણ હોસ્ટ ૫૭૬ બાઇટ્સ ના ડેટાને બાંધવાની ક્ષમતા ધરાવતો હોવો જોઈએ પરંતુ હવે મોટા ભાગના આધુનિક હોસ્ટો આનાથી મોટી પેકેટોને નિયંત્રિત કરી શકે છે. કેટલીકવાર સબનેટવર્કો પેકેટ કદ પર નિયંત્રણ લાદે છે, આવા કિસ્સાઓમાં ડેટાગ્રામ વિભાજન પામે છે. આવા વિભાજીત થયેલા પેકેટોને IPv4માં રાઉટર કે હોસ્ટ વડે નિયંત્રિત થાય છે.
ઓળખ 
આ ફિલ્ડ એક ઓળખ ફિલ્ડ છે અને મુખ્યત્વે અનન્ય મૂળ IP ડેટાગ્રામ ટુકડાઓ ઓળખવા માટે વપરાય છે. કેટલાક પ્રયોગોએ ID ફિલ્ડને અન્ય હેતુઓ (જેવાકે, પેકેટ-ટ્રેસિંગ માહિતી કે જેમાં ઉડીગયેલ સ્ત્રોત સરનામાં વાળા ડેટાગ્રામને શોધવા) માટે ઉમેરવા સૂચન કર્યું છે. [૧૨]
ફ્લેગ્સ 
આ ત્રણ બીટની ફિલ્ડ (ડેટાના) ટુકડાઓને ઓળખવા કે તેને નિયત્રિત કરે છે.
  • બીટ ૦ : અનામત; કિમંત ૦ રહે છે.
  • બીટ ૧ : ટુકડા કરશો નહિ. (DF)
  • બીટ ૨ : વધારે ટુકડાઓ (MF)

જો DF ફ્લેગ સેટ થયો હોય, અને પેકેટના રાઉટ માટે વિભાજન જરૂરી હોયતો, આ પેકેટને ડ્રોપ કરી દેવાય છે. આ ફ્લેગનો ઉપયોગ જયારે પેકેટને હોસ્ટ તરફ મોકલવાનો હોય અને વધુ વિભાજન નિયત્રિત કરવા માટે પૂરતા સ્ત્રોત હોય ત્યારે વાપરી શકાય છે. આનો ઉપયોગ PATH MTU Discovery માટે પણ થાય છે. અવિભાજિત પેકેટો માટે MF ફ્લેગ હોતો નથી. વિભાજીત પેકેટો માટે, છેલ્લા ટુકડા સિવાય બધા ટુકડાઓ પર MF ફ્લેગ સેટ કરેલ હોય છે. છેલ્લા ટુકડા પર શૂન્ય-રહિત વિભાજન ઓફસેટ ફિલ્ડ સેટ કરી હોય છે, જે તેને બીજા અવિભાજિત પેકેટોથી અલગ તારવે છે.

ઓફસેટ ટુકડો 
ઓફસેટ ટુકડાની ફિલ્ડની માપણી આઠ-બાઈટ ના બ્લોક એકમમાં થાય છે, જે ૧૩ બીટ્સ લાબું છે.
ટાઇમ ટુ લીવ (TTL) 
આઠ બાઈટ ના આ ફિલ્ડની મદદથી ડેટાગ્રામ ઈન્ટરનેટમાં સતત અટવાતું અટકે છે. આ ફિલ્ડ ડેટાગ્રામના જીવનકાળને નક્કી કરે છે. આ મર્યાદા સેકન્ડમાં નક્કી કરેલી હોય છે અને તેમનો અંતરાલ મિલી-સેકન્ડમાં હોય છે. વ્યવહારમાં એટલે કે જયારે ડેટાગ્રામ તેના ઉદભવસ્થાનથી તેના નિર્દીશ કે ગંતવ્ય સ્થાને જવા નીકળે ત્યારે તેના માર્ગમાં પડતા દરેક રાઉટરને એક હોપ તરીકે ગણી TTL ના ફિલ્ડમાં એક અંકનો વધારો કરે છે અને જો TTL ફિલ્ડની કિમંત શૂન્ય થાય ત્યારે રાઉટર તે પેકેટને ત્યજી, ખાસકરીને ICMP Time Exceeded પેકેટ તેના ઉદગમ સ્થાનને મોકલી આપે છે.

Traceroute જેવા પ્રોગ્રામો આવા ICMP Time Exceeded પેકેટોની મદદથી ડેટાગ્રામના શરૂઆત થી લઇ અંત સુધીના માર્ગના દરેક રાઉટર ને પ્રિન્ટ કરે છે.

પ્રોટોકોલ 
આ ફિલ્ડ IP ડેટાગ્રામ ના ડેટા ભાગમાં વપરાતા પ્રોટોકોલને વ્યાખ્યાયિત કરે છે. RFC 790 માં દર્શાવેલ IP પોર્ટ નંબર પ્રમાણે તે પ્રોટોકોલના નંબર જાળવી રાખે છે.
હેડર ચેકસમ 
આ ૧૬ બીટનું ફિલ્ડ હેડરની ક્ષતિ-ચકાસણી માટે વપરાઇ છે. જયારે પેકેટ રાઉટર પર આવી પહોચે ત્યારે રાઉટર તેના હેડરના ચેકસમની ગણતરી કરી તેને ચેકસમ ફિલ્ડ સાથે સરખાવે છે. જો બંનેના મુલ્યો જુદા હોય તો પેકેટોને ફગાવી દેવાય છે.

ડેટા ફિલ્ડ માં રહેલી ક્ષતિઓનું સંચાલન એનકેપ્સ્યુલેટ પ્રોટોકોલથી થાય છે. UDP અને TCP બંને પાસે ચેકસમ ફિલ્ડ રહેલી છે. જયારે પેકેટ રાઉટર પર આવી પહોચે ત્યારે રાઉટર તેની TTL ફિલ્ડના મુલ્ય માં એક નો ઘટાડો કરે છે. પરિણામે રાઉટર નવી ચેકસમની ગણતરી કરે છે. આ ગણતરી RFC 1071 માં વ્યાખ્યાયિત છે. ચકાસણી ક્ષેત્ર હેડરમાં બધા 16 બીટ શબ્દોની એક પૂરક રકમ ની 16-bit એક પૂરક છે. ચકાસણી કમ્પ્યૂટિંગ હેતુઓ માટે, ક્ષેત્ર checksum ની કિંમત શૂન્ય છે.

સ્રોત સરનામા 
આ ક્ષેત્ર પેકેટની પ્રેષક ના IPv4 સરનામું છે. આ સરનામું નેટવર્ક સરનામા ભાષાંતર ઉપકરણ દ્વારા પરિવહનમાં બદલી શકાય શકે છે.
લક્ષ્યસ્થાન સરનામું 
આ ક્ષેત્ર પેકેટની રીસીવરનું IPv4 સરનામું છે. સ્ત્રોત સરનામા સાથે, આ નેટવર્ક સરનામા ભાષાંતર ઉપકરણ દ્વારા પરિવહનમાં બદલાઈ શકે છે.
વિકલ્પો 
આ વિકલ્પો ક્ષેત્રમાં વારંવાર ઉપયોગ કરવામાં નથી. જો IHL ક્ષેત્રમાં કિંમત બધા વિકલ્પો ધરાવે છે માટે પૂરતી વધારાની 32 બિટ શબ્દો (વત્તા કોઈપણ પેડિંગ હેડર 32 બીટ શબ્દો અભિન્ન નંબર સમાવે છે તેની ખાતરી કરવા માટે જરૂરી) નો સમાવેશ થાય જ જોઈએ. વિકલ્પોની યાદી એક EOL (વિકલ્પો યાદી અંતે 0x00) વિકલ્પ સાથે સમાપ્ત કરી શકે છે; વિકલ્પો ઓવરને અન્યથા હેડર ઓવરને સાથે સુસંગત હોવું ન હોત તો આ જ જરૂરી છે. હેડર મૂકી શકાય છે કે શક્ય વિકલ્પો નીચે પ્રમાણે છે:
ફિલ્ડ માપ (બીટ્સ) વિવરણ
કોપીડ આ વિકલ્પો ફ્રેગમેન્ટ પેકેટ બધા ટુકડાઓ નકલ કરવાની જરૂર હોય તો 1 રન સેટ કરો.
વિકલ્પ વર્ગ સામાન્ય વિકલ્પો શ્રેણી. 0 " નિયંત્રણ" વિકલ્પો માટે છે, અને 2 માટે છે " ડિબગીંગ અને માપ". 1, અને 3 આરક્ષિત છે.
વિકલ્પ સંખ્યા એક વિકલ્પ સ્પષ્ટ કરે છે.
વિકલ્પ લંબાઇ સમગ્ર વિકલ્પ (આ ક્ષેત્ર સહિત) ના કદ સૂચવે છે. આ ક્ષેત્ર સરળ વિકલ્પો માટે અસ્તિત્વમાં નથી શકે છે.
વિકલ્પ માહિતી પરિવર્તનશીલ વિકલ્પ ચોક્કસ માહિતી. આ ક્ષેત્ર સરળ વિકલ્પો માટે અસ્તિત્વમાં નથી શકે છે.

ડેટા[ફેરફાર કરો]

પેકેટ આ માહિતી ભાગ પેકેટ checksum માં સમાવેલ નથી. તેના સમાવિષ્ટો પ્રોટોકોલ હેડર ક્ષેત્ર ની કિંમત પર આધારિત છે અર્થઘટન કરવામાં આવે છે.

એક લાક્ષણિક IP અમલીકરણ છે, જેમ કે TCP અને UDP તરીકે પ્રમાણભૂત પ્રોટોકોલો પ્રભાવ કારણો માટે, ઓએસ કર્નલ અમલમાં આવે છે. જેમ કે ICMP જેવા અન્ય પ્રોટોકોલની આંશિક કર્નલ દ્વારા અમલમાં, અથવા વપરાશકર્તા સોફ્ટવેરમાં સ્પષ્ટ અમલ કરી શકે છે. કર્નલ માં અમલમાં મૂકાઈ નથી, અને આવા BSD સોકેટો તરીકે પ્રમાણભૂત API નો દ્વારા સંપર્કમાં આવતું નથી પ્રોટોકોલો, ખાસ કરીને 'કાચી સોકેટ' API નો ઉપયોગ કરીને લાગુ કરવામાં આવે છે.

ડેટા ભાગ માટે સામાન્ય પ્રોટોકોલ કેટલાક નીચે મુજબ છે:

પ્રોટોકોલ ક્રમાંક પ્રોટોકોલ નામ સંક્ષેપમાં
ઈન્ટરનેટ કંટ્રોલ મેસેજ પ્રોટોકોલ ICMP
ઈન્ટરનેટ ગ્રુપ મેનેજમેન્ટ પ્રોટોકોલ IGMP
ટ્રાન્સમીશન કંટ્રોલ પ્રોટોકોલ TCP
૧૭ યુસર ડેટાગ્રામ પ્રોટોકોલ UDP
૪૧ IPv6 એન્કેપ્સુલેશન ENCAP
૮૯ ઓપન શોટેસ્ટ પાથ ફર્સ્ટ OSPF
૧૩૨ સ્ટ્રીમ કંટ્રોલ ટ્રાન્સમિશન પ્રોટોકોલ SCTP

સંદર્ભો[ફેરફાર કરો]

  1. "BGP Analysis Reports". Retrieved 2013-01-09. 
  2. Smith, Lucie; Lipner, Ian (3 February 2011). "Free Pool of IPv4 Address Space Depleted". Number Resource Organization. Retrieved 3 February 2011. 
  3. ICANN,nanog mailing list. "Five /8s allocated to RIRs – no unallocated IPv4 unicast /8s remain". 
  4. Asia-Pacific Network Information Centre (15 April 2011). "APNIC IPv4 Address Pool Reaches Final /8". Retrieved 15 April 2011. 
  5. CCNA:Cisco Certified Network Associate Study Guide - 6th Edition by Todd Lammle, Pages 93-100
  6. RFC 760, DOD Standard Internet Protocol (January 1980)
  7. RFC 791, Internet Protocol – DARPA Internet Program Protocol Specification (September 1981)
  8. Robert Braden (October 1989). "Requirements for Internet Hosts – Communication Layers". IETF. p. 66. RFC 1122. 
  9. Smith, Lucie; Lipner, Ian (3 February 2011). "Free Pool of IPv4 Address Space Depleted". Number Resource Organization. Retrieved 3 February 2011. 
  10. ICANN,nanog mailing list. "Five /8s allocated to RIRs – no unallocated IPv4 unicast /8s remain". 
  11. Asia-Pacific Network Information Centre (15 April 2011). "APNIC IPv4 Address Pool Reaches Final /8". Retrieved 15 April 2011. 
  12. Savage, Stefan. "Practical network support for IP traceback". Retrieved 2010-09-06.