પૃથ્વી

વિકિપીડિયામાંથી
આના પર જાવ: ભ્રમણ, શોધો
This article is about ગ્રહ. For other uses, see પૃથ્વી (disambiguation).
Earth Astronomical symbol of Earth
A planetary disk of white cloud formations, brown and green land masses, and dark blue oceans against a black background. The Arabian peninsula, Africa and Madagascar lie in the upper half of the disk, while Antarctica is at the bottom.
"The Blue Marble" photograph of Earth,
taken from Apollo 17
Designations
અન્ય નામો Terra, Gaia
Orbital characteristics
Epoch J2000.0[note ૧]
Aphelion 152,098,232 km
1.01671388 AU[note ૨]
Perihelion 147,098,290 km
0.98329134 AU[note ૨]
ગૌણ મુખ્ય અક્ષ 149,598,261 km
1.00000261 AU[૧]
ઉત્કેન્દ્રતા 0.01671123[૧]
પરિભ્રમણ સમય 365.256363004 days[૨]
1.000017421 yr
પરિભ્રમણ વેગ 29.78 km/s[૩]
107,200 km/h
વિસંગતતા 357.51716°[૩]
ઢોળાવ 7.155° to Sun's equator
1.57869°[૪] to invariable plane
Longitude of ascending node 348.73936°[૩][note ૩]
Argument of perihelion 114.20783°[૩][note ૪]
ગ્રહો

1 natural (the Moon)


8,300+ artificial (as of 1 માર્ચ 2001)[૫]
Physical characteristics
સરેરાશ ત્રિજ્યા 6,371.0 km[૬]
વિષુવવૃતીય ત્રિજ્યા 6,378.1 km[૭][૮]
ધૃવીય ત્રિજ્યા 6,356.8 km[૯]
સપાટ 0.0033528[૧૦]
પરિઘ 40,075.017 km (equatorial)[૮]
40,007.86 km (meridional)[૧૧][૧૨]
સપાટીનું ક્ષેત્રફળ

510,072,000 km2[૧૩][૧૪][note ૫] 148,940,000 km2 land (29.2 %)

361,132,000 km2 water (70.8 %)
કદ 1.08321×૧૦12 km3[૩]
દળ 5.9736×૧૦24 kg[૩]
સરેરાશ ઘનતા 5.515 g/cm3[૩]
Equatorial surface gravity 9.780327 m/s2[૧૫]
0.99732 g
Escape velocity 11.186 km/s[૩]
Sidereal rotation period 0.99726968 d[૧૬]
23h 56m 4.100s
વિષુવવૃતીય ભ્રમણગતિ ૧,૬૭૪.૪ કિમી/ક (૪૬૫.૧ મી/સે)[૧૭]
ધરીનો વળાંક 23°26'21".4119[૨]
Albedo

0.367 (geometric)[૩]

0.306 (Bond)[૩]
Surface temp. min mean max
Kelvin 184 K[૧૮] 287.2 K[૧૯] 331 K[૨૦]
Celsius −89.2 °C 14 °C 57.8 °C
Atmosphere
Surface pressure 101.325 kPa (MSL)
Composition 78.08% nitrogen (N2)[૩] (dry air)
20.95% oxygen (O2)
0.93% argon
0.038% carbon dioxide
About 1% water vapor (varies with climate)



પૃથ્વીસૂર્ય (Sun)થી ત્રીજો ગ્રહ (planet) (ઘોષિત કરવામાં આવ્યોen-us-earth.ogg /ɝːθ/ )[૨૧] છે. ઘનતા (density), દળ (mass) અને વ્યાસ (diameter)માં, પૃથ્વી એ સૌરમંડળ (Solar System)માંનો જમીન ધરાવતો સૌથી મોટો ગ્રહ (terrestrial planet) છે. તેને વિશ્વ (World) અને ટેરા નામે પણ સંબોધવામાં આવે છે. [note ૬]

લાખો-કરોડો જાતિઓ (species)[૨૨] અને મનુષ્ય (human)નું રહેઠાણ એવી પૃથ્વી, આખા બ્રહ્માંડ (universe)નો એક માત્ર એવો ગ્રહ છે જયાં જીવન (life) હોવાનું જાણવા મળ્યું છે. 4.54 અબજ વર્ષો (4.54 billion years) પહેલાં પૃથ્વીની રચના થઈ હતી[૨૩][૨૪][૨૫][૨૬] અને એકાદ અબજ વર્ષ પછી તેની સપાટી પર જીવન પાંગર્યું હતું. ત્યારથી, પૃથ્વીના જીવમંડળ (biosphere)ના કારણે તેના વાયુમંડળ (the atmosphere)માં અને અન્ય અજૈવિક (abiotic) પરિસ્થિતિઓમાં નોંધપાત્ર ફેરફાર આવ્યો છે; હવામાંના જીવતંત્રો (aerobic organisms)નો વિપુલ પ્રમાણમાં વિકાસ તેમ જ ઓઝોન સ્તર (ozone layer)ની રચનાથી તથા તેની સાથે પૃથ્વીના ચુંબકીય ક્ષેત્ર (Earth's magnetic field)ની અસર સૂર્યના હાનિકારક કિરણોને પૃથ્વીની સપાટી પર પહોંચતા અટકાવે છે, જેના પરિણામે પૃથ્વી પર જીવન સંભવી શકયું છે. [૨૭]આ સમયગાળામાં, પૃથ્વીના ભૌતિક ગુણધમો તેમ જ તેના ભૂસ્તરશાસ્ત્રીય ઇતિહાસ અને તેની ભ્રમણકક્ષાના કારણે જીવન ટકી શકયું. પૃથ્વી પર બીજાં 1.5 અબજ વર્ષો સુધી જીવન ટકી શકશે, એ પછી સૂર્યની વધતી જતી તેજસ્વીતા, પૃથ્વીના જીવમંડળને વીંધી નાખશે. [૨૮]


પૃથ્વીનું ઉપલી સપાટી (outer surface) વિવિધ કઠોર ભાગોમાં અથવા તો ટેકટોનિક પ્લેટો (tectonic plate)માં વહેંચાયેલી છે. આ ટેકટોનિક પ્લેટો લાખો-કરોડો વર્ષો (many millions of years)થી સપાટી પર આમથી તેમ ધીમે ધીમે ગતિ કરી રહી છે. પૃથ્વીની સપાટીનો 71% ભાગ ખારા પાણી (salt-water)ના સમુદ્ર (ocean)થી રોકાયેલો છે, બાકીનો ભાગ ખંડો (continent), દ્વિપો (island) અને જે અન્ય કોઈ ગ્રહની સપાટી પર જોવા મળ્યું નથી એવા જીવન માટે આવશ્યક એવા પ્રવાહી જળ (water)થી રોકાયેલો છે.[note ૭][note ૮] પ્રમાણમાં ઘન કહેવાય તેવા લાવારસના આવરણ (mantle)થી બનેલું પૃથ્વીનું અંતરાળ સક્રિય હોય છે, પ્રવાહી બાહ્ય ગર્ભ (outer core) લોહચુંબકીય ક્ષેત્ર ઊભું કરે છે અને અંતઃ ગર્ભ (inner core) ઘન લોહ ધાતુઓનું બનેલું હોય છે.

પૃથ્વી બાહ્ય અવકાશ (outer space)માંના સૂર્ય, ચંદ્ર (Moon) તેમ જ અન્ય ગ્રહો સાથે ક્રિયા-પ્રતિક્રિયાઓ કરે છે. અત્યારે, પૃથ્વી પોતાની ધરી પર ૩૬૫.૨૬ વખત ફરે ત્યારે સૂર્યની આસપાસ એક પરિભ્રમણ પૂરું કરે છે.

આટલા સમયગાળાને તારક વર્ષ (sidereal year) કહેવામાં આવે છે, જે ૩૬૫.૨૬ સૌર દિવસો (solar day) સમાન છે. [note ૯]

પૃથ્વીની ધરી, 23.4ના ખૂણે તેની ભ્રમણકક્ષા (orbital plane)ને કાટખૂણે (perpendicular) સહેજ નમેલી (tilted) છે, [૨૯] જેના કારણે પૃથ્વીની સપાટી પર એક ઉષ્ણકટિબંધીય વર્ષ (tropical year) (૩૬૫.૨૪ સૌર દિવસો) દરમ્યાન જુદી જુદી ૠતુઓ પેદા થાય છે.

ચંદ્ર પૃથ્વીનો એક માત્ર જાણીતો કુદરતી ઉપગ્રહ (natural satellite) છે. આશરે 4.53 અબજ વર્ષો પહેલાં ચંદ્રે પૃથ્વીની ફરતે પરિભ્રમણ કરવાનું શરૂ કયુર્ં. તેના આ પરિભ્રમણથી સમુદ્રમાં ભરતી-ઓટ (tide) પેદા થાય છે, પૃથ્વીની ધરીનો ખૂણો સ્થિર બની રહે છે તથા પૃથ્વીનું તેની ધરી પરનું પરિભ્રમણ ધીરે ધીરે ધીમું પડતું જાય છે.આશરે ૪.૧ અને ૩.૮ બજ વર્ષો અગાઉ થયેલ ભારે તોપમારા જેવા વરસાદ (Late Heavy Bombardment)થી ઊભી થયેલી મધ્યગ્રહો (asteroid)ની અસરોથી પૃથ્વીની સપાટી પરના વાતાવરણમાં નોંધપાત્ર ફેરફાર થયો હતો.


પૃથ્વીના પેટાળમાંના ખનિજ સ્રોતો તેમ જ જીવમંડળની પેદાશો વિશ્વની માનવ વસતિને ટકવા માટે જરૂરી સ્રોતો પૂરાં પાડે છે. પૃથ્વી પર વસતા મનુષ્ય સમુદાયો આશરે 200 સાર્વભૌમી રાષ્ટ્રોમાં વહેંચાયેલા છે, જે એકબીજા સાથે વેપાર, પ્રવાસ, રાજકીય મુત્સુદ્દીપણા અને લશ્કરી ગતિવિધિઓથી સંપર્કમાં રહે છે. પૃથ્વી બાબતે માનવ સંસ્કૃતિએ અનેક વિભાવનાઓ ઊભી કરી હતી- જેમાં પૃથ્વીને દૈવી માનવાની બાબત, સપાટ પૃથ્વી (flat Earth)ની વિભાવના અને પૃથ્વીને જાળવણી માંગતી એક સંકલિત વાતાવરણ વ્યવસ્થા તરીકે જોતા આધુનિક દષ્ટિકોણનો પણ સમાવેશ થાય છે.

૧૯૬૧ જયારે યુરી ગાગરિન (Yuri Gagarin) બાહ્ય અવકાશમાં પહોંચ્યો ત્યારે પહેલીવાર કોઈ માનવીએ પૃથ્વીની સપાટીથી બહાર પગ મૂકયો હતો.

ઘટનાક્રમ / સાલવારી[ફેરફાર કરો]

પૃથ્વીના ભૂતકાળ અંગે વિજ્ઞાનીઓ વિગતવાર માહિતીની પુનઃરચના કરી શકયા છે.

સૌથી નજીકના સમયના સૌરમંડળના અંશ નીચેની તારીખ/સમયગાળાના છે- 4.5672 ± 0.0006 અબજ વર્ષો અગાઉ,[૩૦] અને 4.54 અબજ વર્ષો અગાઉ (1% અચોક્કસતા હોઈ શકે)[૨૩][૨૪][૨૫][૨૬]


સૂર્યની નિહારિકા (solar nebula)માંથી- સૂર્યમાંથી ફેંકાયેલા કચરા-ધૂળ અને ગેસમિશ્રિત, ગોળ ચપટી તકતી જેવા આકારના ટુકડાઓમાંથી પૃથ્વી અને સૌર માળાના અન્ય ગ્રહોની રચના થઈ છે.

આવાં ઉમેરાયેલાં દ્રવ્યો વડે પૃથ્વીનું બંધારણ મોટા ભાગે 100–200–લાખ–વર્ષોમાં પૂરું થયું હતું. [૩૧]શરૂઆતમાં જયારે પૃથ્વીનું બહારનું પીગળેલું (molten) આવરણ ઠંડું પડીને એક ઘન સ્તરમાં ફેરવાયું ત્યારે વાતાવરણમાં પાણી એકઠું થવું શરૂ થયું. એના પછી થોડા જ સમયમાં ચંદ્રનું નિર્માણ થયું. એવું કહેવાય છે કે પૃથ્વીના 10% જેટલો દ્રવ્ય-જથ્થો[૩૨] ધરાવતો મંગળના કદનો ટુકડો (કયારેક તેને થેઈયા (Theia) કહેવામાં આવે છે), પૃથ્વી સાથે ઝડપભેર અથડાતાં તેના આઘાતથી ચંદ્રનું સર્જન થયું હતું.[૩૩] આ ટુકડામાંથી કેટલોક દ્રવ્ય-જથ્થો પૃથ્વીમાં ભળી ગયો અને કેટલોક અવકાશમાં ફેંકાયો, જે ભ્રમણકક્ષા પર ચંદ્રનું સર્જન કરવા માટે પૂરતો હતો.


ગેસ વિસર્જન અને ભભૂકતા જવાળામુખી (volcanic)ઓના પરિણામે આદિકાળનું વાયુમંડળ પેદા થયું. પાણીની વરાળ (water vapor)ના સંકોચનથી, મધ્યગ્રહો, વિશાળ પ્રોટો-ગ્રહો, ધૂમકેતુઓ અને ટ્રાન્સ-નેપ્ચ્યુનિયન પદાર્થો દ્વારા પહોંચતો બરફ અને પ્રવાહી પાણીથી મહાસાગરોનું નિર્માણ થયું (produced the oceans).[૩૪] ખંડીય વિકાસ માપવા માટે બે મુખ્ય મૉડલ સૂચવાયાં છેઃ [૩૫]આજના દિવસનો સ્થિર વિકાસ[૩૬] અને પૃથ્વીના ઇતિહાસમાં શરૂઆતમાં થયેલો ઝડપી વિકાસ. [૩૭] ખંડીય પોપડાઓ શરૂઆતમાં ઝડપથી વિકાસ પામ્યા હોય[૩૮] અને પછી લાંબા સમય સુધી સ્થિર ખંડીય વિસ્તાર તરીકે વિકસ્યા હોય તેવો બીજા વિકલ્પ, હાલના સંશોધન પ્રમાણે વધુ સંભવિત લાગે છે. [૩૯][૪૦][૪૧]

સેંકડો કરોડો વર્ષોના સમયગાળા (time scales) સુધી, ખંડો બનવા અને તૂટતાં રહેવાની પ્રક્રિયાને પરિણામે પૃથ્વીની સપાટી સતત વિકસતી, આકાર બદલતી રહી છે.

આ ખંડો પૃથ્વીની સપાટી પર આમથી તેમ ગતિ પણ કરતા અને કયારેક એકબીજા સાથે જોડાઈને મહાખંડ (supercontinent) બનાવતા. સૌથી શરૂઆતના જાણીતા મહાખંડોમાંથી એક, રોડિનીઆ (Rodinia) નામનો મહાખંડ આશરે 7500 લાખ વર્ષો અગાઉ (મ્યા (mya)) તૂટવો શરૂ થયો હતો. 600–540 mya લાખ વર્ષો અગાઉ એ ખંડોએ પાછળથી ફરીથી જોડાઈને પેન્નોટિયા (Pannotia) ખંડ બનાવ્યો, અને પછી છેવટે પાંગઈઆ (Pangaea) ખંડ બનાવ્યો, જે 180 mya લાખ વર્ષો અગાઉ તૂટીને છૂટો પડ્યો. [૪૨]


જીવનની ઉત્ક્રાંતિ[ફેરફાર કરો]

અત્યારે જીવનની ઉત્ક્રાંતિ (evolution)ને ટકાવી શકે, પોષી શકે તેવું એકમાત્ર ઉદાહરણરૂપ વાતાવરણ માત્ર પૃથ્વી પર જ ઉપલબ્ધ છે.[૪૩] 4 અબજ વર્ષો અગાઉ, અતિશય ઊર્જાવાન રાસાયણિક પ્રક્રિયાઓથી પોતાની જાતનું અનુસર્જન/સ્વ-પ્રતિકૃતિ રચતો અણુ પેદા થયો હશે અને તેના અડધા બિલિયન વર્ષો પછી તમામ જીવોનો સૌથી છેલ્લો વિશ્વવ્યાપક સામાન્ય પૂર્વજ (last common ancestor of all life) અસ્તિત્વ ધરાવતો હશે તેવું માનવામાં આવે છે.[૪૪] પ્રકાશસંશ્વ્લેષણ (photosynthesis)ની પ્રક્રિયાના વિકાસથી સૂર્યની ઊર્જા સીધી જૈવ રૂપમાં સંગ્રહિત થઈ શકી; તેના પરિણામે વાયુમંડળમાં ઑકિસજન એકઠો થવો શરૂ થયો અને ઉપરના વાયુમંડળમાં ઓઝોન (ozone)(ઑકિસજનના અણુ (molecular oxygen)નું એક રૂપ [O3] )નું સ્તર બનવા માંડ્યું.નાના કોષોની મોટા કોષોમાં સમાઈ જવાની પ્રક્રિય, યુકાર્યોટેસ (eukaryotes) નામના જટીલ કોષોનો વિકાસ (development of complex cells)માં પરિણમી. [૪૫] વસાહતો (colonies)માંના કોષો વધુમાં વધુ વિશિષ્ટ કામગીરી કરતાં બનવા લાગ્યા એટલે તેમના જોડાવાથી સાચા બહુકોશી સજીવો પેદા થયા. સૂર્યમાંથી આવતા હાનિકારક નીલાતીત કિરણોત્સર્ગ (ultraviolet radiation), ઓઝોન સ્તર (ozone layer)માં શોષાઈ જતા હોવાથી પૃથ્વીની સપાટી પર જીવન વસાહતોમાં વિકસવા માંડયું.[૪૬]


ઓગણીસો સાઈઠના દસકાથી એવું ધારવામાં આવે છે કે જીવનારંભિક (Neoproterozoic) યુગ દરમ્યાન, એટલે કે 7500 અને 5800  લાખ વર્ષો અગાઉના સમયગાળા દરમ્યાન હિમનદી (glacial)ઓની તીવ્ર ગતિવિધિઓના કારણે આખી પૃથ્વી હિમ-આવરણથી ઢંકાઈ ગઈ હતી. આ પૂર્વધારણા માટે "હિમદડા સમી પૃથ્વી (Snowball Earth)" શબ્દપ્રયોગ વાપરવામાં આવે છે. જયારે બહુકોશી જીવો વિપુલ પ્રમાણમાં વિકસવા માંડયા તે પુરાજીવ સ્ફોટ (Cambrian explosion)ને આ પૂર્વધારણા વહેલો ઘટતો દર્શાવતી હોવાથી વિશેષ ધ્યાનપાત્ર બને છે. [૪૭]


પુરાજીવ સ્ફોટ પછી લગભગ 5350 લાખ વર્ષો અગાઉની આસપાસ પાંચ મોટા લોપ (mass extinctions) થયા.[૪૮] છેલ્લી જીવ લોપની ઘટના (last extinction event) 650 લાખ વર્ષો અગાઉ બની. એ સમયે ઊડી ન શકે તેવાં દિનોસૌર (dinosaur) અને અન્ય વિશાળ સરીસૃપ પ્રાણીઓનો કદાચ બાહ્યાવકાશમાંથી ઉલ્કા પડવાથી અથવા તો તેની અથડામણને કારણે લોપ થયો; જો કે છંછુદરને મળતાં આવતાં કેટલાંક નાનાં સસ્તન પ્રાણી (mammal)ઓ એ વિનાશમાંથી બચી ગયાં.

છેલ્લાં 650 લાખ વર્ષોમાં વિવિધ પ્રકારનાં સસ્તન પ્રાણીઓનો વિકાસ થયો અને અમુક લાખ વર્ષોથી તો આફ્રિકાના વાંદરા-જેવા દેખાતા પ્રાણીઓએ ટટ્ટાર ચાલવાની ક્ષમતા પણ કેળવી લીધી છે. [૪૯] આ સક્ષમ સાધને વિશાળ મગજના વિકાસ માટે જરૂરી પોષણ અને ઉદ્દીપન પૂરાં પાડતાં પ્રત્યાયનનો ઉપયોગ કર્યો અને પ્રોત્સાહન આપ્યું. ખેતીનો વિકાસ અને ત્યારબાદ સભ્યતાનો વિકાસ થવાથી આજ પહેલાં આટલા ટૂંકા ગાળામાં પૃથ્વીને- તેના પરની કુદરત અને અન્ય જીવસૃષ્ટિના જથ્થાને આટલી જબરજસ્ત રીતે પ્રભાવિત કરનાર એક માત્ર મનુષ્ય છે, એ સિવાયનો અન્ય કોઈ જીવ આમ કરી શકયો નથી. [૫૦]


અત્યારની હિમયુગ (ice age)ની ભાત છેલ્લાં 400 લાખ વર્ષો અગાઉ જ શરૂ થઈ છે અને પછી લગભગ 30 લાખ વર્ષો અગાઉના નૂતનતમ કાળ (Pleistocene)માં તે વધુ તીવ્ર બની છે. ત્યારથી ધુ્રવ પ્રદેશો પર બરફ જામવા અને પીગળવાની પ્રક્રિયા સતત ચાલતી રહી છે, જે દર 40–100,000 વર્ષોએ પુનરાવર્તિત થાય છે.છેલ્લો હિમયુગ 10,000 વર્ષો પહેલાં પૂરો થયો હતો. [૫૧]

ભવિષ્ય[ફેરફાર કરો]

સૂર્યનું જીવનચક્ર

પૃથ્વીનું ભવિષ્ય, સૂર્યના ભવિષ્ય સાથે કસકસાવીને બાંધેલું છે.

સૂર્યના કેન્દ્રમાં એકધારી હીલિયમની રાખ એકઠી થતી જતી હોવાથી તારાની સંપૂર્ણ તેજસ્વીતા (star's total luminosity) ધીમે ધીમે વધશે. આવતા 1.1; ગિગાવર્ષ (Gyr)(1.1; અબજ વર્ષો)-માં સૂર્યની તેજસ્વીતા 10 ટકા વધશે અને આવતા 3.5 ગિગાવર્ષમાં ૪૦% જેટલી વધશે.[૫૨] પૃથ્વી પર પહોંચતા સૂર્યના કિરણો જેમ જેમ વધતા જશે તેમ તેમ તેનાં ભયંકર પરિણામોનો સામનો કરવાનો આવશે એવું હવામાન અંગેના મૉડલો સૂચવી રહ્યા છે, તેના કારણે પૃથ્વીના મહાસાગરોનો લોપ થાય તેવી શકયતા પણ છે. [૫૩]

આવતાં 9000 લાખ વર્ષોમાં પૃથ્વીની સપાટી પરનું તાપમાન વધવાથી નિર્જીવ (inorganic) કાર્બન ડાયોકસાઈડનું CO2ચક્ર (CO2 cycle) વધુ ગતિમાન બનશે, જેમાં તેનું પ્રમાણ વનસ્પતિઓ માટે જીવલેણ કહી શકાય એટલી હદે ઘટશે (C4 પ્રકાશસંશ્વ્લેષણ (C4 photosynthesis) માટે 10 પીપીએમ (ppm)). વનસ્પતિ/ઝાડ-પાનના અભાવના કારણે વાયુમંડળમાં ઑકિસજનનું પ્રમાણ પણ ઘટશે. પરિણામે આવતા અમુક લાખ વર્ષોમાં પ્રાણીજીવન પણ લુપ્ત બનશે. [૫૪] અને જો કદાચ સૂર્ય એવો જ શાશ્વ્વત અને સ્થિર રહે તો પણ સતત અંદરથી ઠરતી જતી પૃથ્વી, ઠરતા જતા જવાળામુખી (volcanism)ઓને કારણે પોતાનું મોટા ભાગનું વાયુમંડળ અને મહાસાગરો ગુમાવી બેસશે. <>Guillemot, H.; Greffoz, V. (March 2002). "Ce que sera la fin du monde" (in French). Science et Vie N° 1014. </ref> બીજાં બિલિયન વર્ષોમાં પૃથ્વીની સપાટી પરથી તમામ પાણી અદશ્ય બની જશે[૨૮] અને વિશ્વનું તાપમાન 70 ડિગ્રી સેલ્સિયસ પર પહોંચશે.[૫૪] એક ધારણા પ્રમાણે પૃથ્વી પર બીજાં 5000 લાખ વર્ષો સુધી જીવન અસરકારક રીતે ટકી શકશે. [૫૫]


લગભગ 5 ગિગાવર્ષમાં, સૂર્ય પોતાની ઉત્ક્રાંતિ (evolution)ના ભાગ રૂપે, લાલ ગોળા (red giant)માં પલટાઈ જશે. કેટલાક મૉડલ પ્રમાણે એવું પણ અનુમાન કરવામાં આવ્યું છે કે સૂર્ય પોતાના કદ કરતાં લગભગ 250 ગણો વધુ વિસ્તરશે૧ AU (૧૫,૦૦,૦૦,૦૦૦ કિ.મી). [૫૨][૫૬] પૃથ્વીનું ભવિષ્ય ધૂંધળું છે. સૂર્ય લાલ ગોળામાં પરિણમશે એનાથી તેનો લગભગ 30% દ્રવ્ય-જથ્થો છૂટો પડશે અને તેની અસરથી જયારે સૂર્ય તેની મહત્તમ ત્રિજયાએ પહોંચશે ત્યારે પૃથ્વી પણ તેની સૂર્ય-ભ્રમણકક્ષા૧.૭ AU (૨૫,૦૦,૦૦,૦૦૦ કિ.મી)થી દૂર જશે. આમ, પૃથ્વી સૂર્યના બાહ્ય વાયુમંડળના ફેંકાતા અંશોથી બચી જશે પણ ત્યાં સુધીમાં તેના પરની તમામ નહીં તો મોટા ભાગની જીવસૃષ્ટિ સૂર્યની તેજસ્વીતાને કારણે નાશ પામી હશે. [૫૨]જો કે, તાજેતરમાં થયેલા એક વધુ અનુમાન મુજબ, ભરતીઓટની અસરો અને તેની ધીમી થતી જતી ગતિના કારણે પૃથ્વીની ભ્રમણકક્ષા ક્ષીણ થતી જશે અને પરિણામે એ લાલ ગોળો બનેલા સૂર્યના વાતાવરણમાં ખેંચાઈને વિનાશ પામશે. [૫૬]

બંધારણ અને માળખું[ફેરફાર કરો]

પૃથ્વી એક જમીન ધરાવતો ગ્રહ છે, એટલે કે તે ગુરુ (Jupiter) જેવો વાયુગોળો (gas giant) નથી પરંતુ ખડકાળ ભૂસ્તર ધરાવે છે. જમીન ધરાવતા ચાર ગ્રહોમાંથી પૃથ્વી કદ અને દળમાં સૌથી મોટો ગ્રહ છે. આ ચાર ગ્રહોમાં, પૃથ્વી સૌથી ઊંચી ઘનતા, સૌથી વધુ સપાટી પરનું ગુરુત્વાકર્ષણ (surface gravity), સૌથી શકિતશાળી લોહચુંબકીય ક્ષેત્ર અને સૌથી ઝડપી ભ્રમણ કરતો ગ્રહ છે. [૫૭] આ ઉપરાંત પૃથ્વી જયાં પ્લેટ ટેકટોનિકસ (plate tectonics) સક્રિય હોય તેવો જમીન ધરાવતો એક માત્ર ગ્રહ છે. [૫૮]


આકાર[ફેરફાર કરો]

અંદરના ગ્રહોના કદની સરખામણી (ડાબેથી જમણે) : બુધ (Mercury), શુક્ર (Venus), પૃથ્વી અને મંગળ (Mars)

પૃથ્વીનો આકાર ચપટો ગોળા (oblate spheroid) જેવો છે, બંને ધુ્રવો વચ્ચે પૃથ્વીનો ગોળો એ રીતે ગોઠવાયેલો છે જેનાથી વિષુવવૃત્ત (equator)ની ફરતે ઉપસેલો ભાગ (bulge) બને છે. [૫૯]

વિષુવવૃત્તની આસપાસનો આ ઉપસેલો ભાગ પૃથ્વીના પરિભ્રમણ (rotation)ને આભારી છે. તેના કારણે ધ્રુવ (pole)થી ધ્રુવ સુધીના વ્યાસ કરતાં વિષુવવૃત્ત વ્યાસ 43 કિ.મી. મોટો બને છે. [૬૦] ગોળા જેવા આકારની પૃથ્વીનો એકંદર વ્યાસ આશરે 12,742 કિ.મી. છે. પૅરિસ (Paris), ફ્રાન્સે ઠેરવ્યા મુજબ વિષુવવૃત્તથી ઉત્તર ધ્રુવ (North Pole) સુધીના અંતરના 1/10,000,000 ભાગને મૂળભૂત રીતે મીટર (meter) તરીકે વ્યાખ્યાયિત કરવામાં આવ્યો હતો, તે મુજબ આ વ્યાસ લગભગ 40,000 કિ.મી./ટીટી (π) છે.[૬૧]

આ આદર્શ ગોળા જેવા આકારથી સ્થાનિક ભૂગોળ (topography) સહેજ જુદી પડે છે, પણ વૈશ્વિક પટલ પર આ ફેરફારો ખૂબ નાના હોય છેઃ જેમ કે આશરે ૫૮૪ ભાગમાંથી એક ભાગ જેટલી અથવા તો સંદર્ભિત ગોળા કરતાં 0.17% જેટલી પૃથ્વીની સહનશકિત (tolerance) છે, જે બિલિયર્ડ બોલો (billiard ball)માં સ્વીકૃત 0.22% કરતાં પણ ઓછી છે.[૬૨]

પૃથ્વીની ખડકાળ સપાટી પરના સૌથી મોટા સ્થાનિક ફેરફારો માઉન્ટ એવરેસ્ટ (Mount Everest) (સ્થાનિક દરિયાની સપાટીથી 8,848 મી. ઊંચાઈ) અને મરિઆના ખાઈ (Mariana Trench) (સ્થાનિક દરિયાની સપાટીથી 10,911 મી. ઊંડાઈ) પર જોવા મળે છે. વિષુવવૃત્તીય ઉપસેલા ભાગને કારણે, પૃથ્વીના કેન્દ્રથી સૌથી દૂર આવેલ પર્વતમાળા ખરેખર ઍકવાડોર (Ecuador)માં આવેલ ચિમ્બોરાઝો પર્વત (Mount Chimborazo) છે. [૬૩][૬૪]

એફ. ડબલ્યુ. કલાર્કનું પોપડાના ઑકસાઈડોનું ટેબલ
સંયોજન સૂત્ર રચના
સિલિકા (રેતી જેવું દ્રવ્ય) (silica) SiO2 59.71%
ઍલ્યુમિન (alumina) Al2O3 15.41%
ચૂનો (lime) CaO 4.90%
મેગ્નેસીઆ (Magnesia) MgO 4.36%
સોડિઅમ ઑકસાઈડ (sodium oxide) Na2O 3.55%
આયર્ન(II) ઑકસાઈડ (iron(II) oxide) FeO 3.52%
પોટેશિયમ ઑકસાઈડ (potassium oxide) K2O 2.80%
આયર્ન(III) ઑકસાઈડ (iron(III) oxide) Fe2O3 2.63%
પાણી (water) H2O 1.52%
ટાઈટેનિયમ ડાયોકસાઈડ (titanium dioxide) TiO2 0.60%
ફોસ્ફરસ પેન્ટોકસાઈડ (phosphorus pentoxide) P2O5 0.22%
કુલ 99.22%

રાસાયણિક બંધારણ[ફેરફાર કરો]

પૃથ્વીનું દળ આશરે 5.98×૧૦24 કિ.ગ્રા. છે. તેનો મોટો ભાગ લોખંડ (iron) (32.1%), ઑકિસજન (30.1%), સિલિકોન (silicon) (15.1%), મેગ્નેશિયમ (magnesium) (13.9%), ગંધક (sulfur) (2.9%), નીકલ (nickel) (1.8%), કેલ્શિયમ (calcium) (1.5%), અને એલ્યુમિનિયમ (aluminium) (1.4%)-થી બનેલો છે અને બાકીનો 1.2% ભાગ અન્ય ઘટકોના અલ્પાંશથી બનેલો છે. દળના વિભાગીકરણ (mass segregation)ને કારણે પૃથ્વીના ગોળાનો કેન્દ્ર વિસ્તાર મુખ્યત્વે લોહ (88.8%)થી અને બહુ થોડા પ્રમાણમાં નીકલ (5.8%) અને ગંધક (4.5%)થી, અને 1% કરતાં પણ ઓછા અન્ય ઘટકોના અલ્પાંશથી બનેલો હોવાનું માનવામાં આવે છે.[૬૫]


ભૂરસાયણશાસ્ત્રી એફ. ડબલ્યુ. કલાર્ક (F. W. Clarke)ની ગણતરી મુજબ, પૃથ્વીના ભૂકવચનો 47%થી થોડોક વધુ ભાગ ઑકિસજન ધરાવે છે. પૃથ્વીનું ભૂકવચ જેનાથી બન્યું છે તે તમામ ખડકો લગભગ ઑકસાઈડ છે; માત્ર કલોરિન, સલ્ફર અને ફલુઓરિન જ તેમાં અપવાદ છે; જો કે કોઈ પણ ખડકમાં તેમનું પ્રમાણ 1% કરતાં પણ ઘણું ઓછું હોય છે.મુખ્ય ઑકસાઈડોમાં સિલિકા, ઍલ્યુમિના, આયર્ન ઑકસાઈડ, ચૂનો, મૅગનેસીઆ, પોટાશ અને સોડાનો સમાવેશ થાય છે. સિલિકા પ્રાથમિક રૂપે ઍસિડ તરીકે કામ આપીને સિલિકેટ્સની રચના કરે છે. અગ્નિકૃત ખડકોમાં મળી આવતા તમામ સામાન્ય ખનિજો આ પ્રકારના હોય છે. તમામ પ્રકારના 1,672 ખડકોનું કમ્પ્યૂટર પર આંકડા આધારિત પૃથક્કરણ કર્યા બાદ, કલાર્કે તેમાંથી 99.22% ખડકો 11 ઑકસાઈડના બનેલા હોવાનું તારવ્યું (જમણી તરફ આપવામાં આવેલું ટેબલ જોશો). બાકીના અન્ય ઘટકો ખૂબ ઓછી માત્રામાં હોય છે. [note ૧૦]

આંતરિક માળખું[ફેરફાર કરો]

અન્ય જમીન ધરાવતા ગ્રહોની જેમ, પૃથ્વીનું પેટાળ રાસાયણિક (chemical) અથવા ભૌતિક (રિઓલોજીકલ (rheological)) ગુણધર્મો અનુસાર જુદા જુદા સ્તરોમાં વહેંચાયેલું છે.પૃથ્વીનું બહારનું સ્તર રાસાયણિક રીતે તદ્દન અલગ પડી આવતું સિલિકેટ (silicate)નું ઘન સ્તર (crust) છે, જેની નીચે ખૂબ ઘટ્ટ, ચીકણો એવો ઘન લાવારસ છે.મોહોરોવિવિક વિક્ષેપ (Mohorovičić discontinuity)થી આ સ્તર તેની નીચેના લાવારસથી જુદું પડે છે. આ સ્તરની જાડાઈ બદલાતી રહે છે- જે મહાસાગરોની અંદર એકંદરે 6 કિ.મી. અને ખંડોમાં 30થી 50 કિ.મી.ની હોય છે.આ સ્તર તથા લાવારસનું ઉપલું ઠરી ગયેલું, કઠણ આવરણ (upper mantle)ને સંયુકત રીતે શિલાવરણ (lithosphere) કહેવામાં આવે છે. ટૅકટોનિક પ્લેટો (tectonic plate) આ શિલાવરણથી જ બનેલી હોય છે.શિલાવરણની નીચે પ્રમાણમાં ઓછું ઘટ્ટ એવું એસ્થેનોસ્ફિઅર (asthenosphere) આવેલું છે, જેની પર શિલાવરણ તરે છે. સપાટીથી 410 અને 660 કિ.મી. નીચે લાવારસના સ્ફટિક બંધારણમાં મહત્ત્વના ફેરફારો આકાર લે છે, જયાં રૂપાંતરણ/સંક્રમણ વિસ્તાર (transition zone) છે, જે લાવારસના ઉપલા અને નીચલા આવરણને અલગ કરે છે. લાવારસની નીચે અત્યંત ઓછું ચીકણું પ્રવાહીનો બનેલો બહારનો ગર્ભ (outer core) હોય છે અને તેની નીચે સખત, ઘન એવો આંતરિક ગર્ભ (inner core) હોય છે. [૬૬]પૃથ્વીનો અંત: ગર્ભ, બાકીની પૃથ્વી કરતાં સહેજ વધુ એવા કોણીય વેગ (angular velocity)થી ફરે છે, જે દર વર્ષે 0.1–0.5° જેટલો વધે છે. [૬૭]

પૃથ્વીના ભૂસ્તરશાસ્ત્રીય સ્તરો[૬૮]
Earth-crust-cutaway-english.svg

પૃથ્વીનો પેટાળથી બાહ્ય વાતાવરણ સુધીનો આડો છેદ.પરિમાણ મુજબ નથી.
ઊંડાઈ[૬૯]
કિ.મી.
ઘટક સ્તર ઘનતા
ગ્રા/સે.મી.3
0;60 શિલાવરણ [note ૧૧]
0–35 ...ભૂકવચ / પોપડો [note ૧૨] 2.2–2.9
35–60 ...ઉપલું લાવારસ આવરણ 3.4–4.4
35–2890 લાવારસ આવરણ 3.4–5.6
100–700 ...ઍસ્થેનોસ્ફિઅર
2890–5100 બાહ્ય ગર્ભ 9.9–12.2
5100–6378 અંતઃ ગર્ભ 12.8–13.1

ગરમી[ફેરફાર કરો]

પૃથ્વીની બાહ્ય વૃદ્ધિથી પેદા થયેલી ગરમીના અવશેષ (residual heat from planetary accretion)થી (20%) અને કિરણોત્સર્ગી પદાર્થોના વિસર્જનથી પેદા થયેલી ગરમી (80%)ના સંયોજનથી પૃથ્વીમાં આંતરિક ગરમી (internal heat) પેદા થાય છે.[૭૦]પોટેશિયમ-40 (potassium-40), યુરેનિયમ-238 (uranium-238), યુરેનિયમ-235 અને થોરિયમ-232 (thorium-232) પૃથ્વીના સૌથી વધુ ગરમી પેદા કરતાં રાસાયણિક મૂળતત્ત્વો છે.[૭૧]પૃથ્વીના કેન્દ્રમાં 7,000 કે સુધીનું ઉષ્ણતામાન અને 360 જીપીએ (GPa) જેટલું દબાણ હોવાનું ધારવામાં આવે છે.[૭૨] મોટા ભાગની ગરમી કિરણોત્સર્ગી પદાર્થોના વિસર્જનથી પેદા થતી હોવાથી વિજ્ઞાનીઓનું એવું માનવું છે કે પૃથ્વીના ઇતિહાસની શરૂઆતમાં, જયારે રાસાયણિક મૂળતત્ત્વો ટૂંકા દ્વિ-જીવીમાં અવક્ષય થયો ત્યારે પૃથ્વી ઘણી વધુ ગરમી પેદા કરતી હશે. ગરમીના આ વધારાના જથ્થાથી, જે આજ કરતાં લગભગ બમણો હતો, એટલે કે આશરે 3 અબજ વર્ષો અગાઉ,[૭૦] પૃથ્વીમાં ઉષ્ણતામાનના પ્રવાહો વધાર્યા હશે, લાવારસ પ્રસારણ (mantle convection) અને પ્લેટ ટેકટોનિકસ (plate tectonics)નો દર વધાર્યો હશે અને તેથી કોમાટ્ટિટ્સ (komatiites) જેવા અગ્નિકૃત ખડકોનું નિર્માણ થયું હશે, જે આજે બનતા જોવા મળતા નથી. [૭૩]

વર્તમાન સમયમાં મુખ્ય ગરમી પેદા કરનાર રાસાયણિક મૂળતત્ત્વો[૭૪]
રાસાયણિક મૂળતત્ત્વો ગરમી વિસર્જન (ડબલ્યુ/કિ.ગ્રા. રાસાયણિક મૂળતત્ત્વો) અર્ધ-આયુષ્ય (વર્ષો) સરેરાશ લાવારસનું કેન્દ્રીકરણ (રાસાયણિક મૂળતત્ત્વો કિ.ગ્રા./લાવારસ કિ.ગ્રા.) ગરમીનું વિસર્જન (ડબલ્યુ/કિ.ગ્રા. લાવારસ)
238U 9.46 × 10-5 4.47 × 109 30.8 × 10-9 2.91 × 10-12
235U 5.69 × 10-4 7.04 × 108 0.22 × 10-9 1.25 × 10-13
232Th 2.64 × 10-5 1.40 × 1010 124 × 10-9 3.27 × 10-12
40K 2.92 × 10-5 1.25 × 109 36.9 × 10-9 1.08 × 10-12

પૃથ્વી પરથી છૂટી પડતી કુલ ગરમી4.2 × 1013 Watts.[૭૫]પૃથ્વીના ગર્ભની થર્મલ ઊર્જાનો અમુક ભાગ, પોપડા તરફ લાવારસના ગોટા (Mantle plume)ઓ થકી પરિવહન પામે છે. ગરમી પ્રસારણની આ ક્રિયા ઊંચા-તાપમાનના ખડકોમાં ઉથલપાથલથી સર્જાય છે.લાવારસના આ ગોટા ગરમ પાણીના ઝરા (hotspots) અથવા બેસાલ્ટ પૂર (flood basalt) પેદા કરે છે.[૭૬] પૃથ્વીના પેટાળમાંની મોટા ભાગની ગરમી દરિયા મધ્યે સર્જાતી પર્વતમાળા સાથે સંકળાયેલી લાવારસની ઉથલપાથલ અને પ્લેટ ટેકટોનિકસથી મુકત થાય છે. પૃથ્વીના પેટાળમાંની ગરમીના વિસર્જનનો અંતિમ મુખ્ય માર્ગ શિલાવરણમાં ગરમીના વહનનો છે. ખંડો કરતાં મહાસાગરોના તળિયે ભૂકવચ પ્રમાણમાં ઘણું પાતળું હોવાથી શિલાવરણમાંથી ગરમીનું મોટા ભાગનું વિસર્જન ત્યાં થતું હોય છે.[૭૫]

ટૅકટોનિક પ્લેટ્સ[ફેરફાર કરો]

પૃથ્વીની બહારનું પ્રમાણમાં સખત એવું શિલાવરણ જયારે તૂટીને ટુકડાઓ થાય છે ત્યારે તેને ટૅકટોનિક પ્લેટ (tectonic plate) કહે છે. આ પ્લેટ એટલે શિલાવરણના એવા સખત કપાયેલા ભાગો જે એકબીજાના સંદર્ભે ત્રણ પ્રકારમાંથી કોઈ એક પ્રકારની ગતિ કરે છેઃ કેન્દ્રગામી સીમાઓ (Convergent boundaries)- જેમાં બંને પ્લેટ એકબીજાની નજીક સરકે છે; વિરોધી દિશામાં ગતિ કરતી સીમાઓ (Divergent boundaries), જેમાં બંને પ્લેટ એકબીજાથી વિરુદ્વ દિશામાં ગતિ કરે છે અને રૂપાંતરણ સીમાઓ (Transform boundaries), જેમાં બંને પ્લેટ રીતસર એકબીજામાં ધસી જાય છે. આ પ્લેટની સીમાઓ પર ભૂકંપ (Earthquake), જવાળામુખી, પર્વત-રચના (mountain-building) અને દરિયાઈ ખાઈ (oceanic trench) રચાવી જેવી બાબતો બનતી હોય છે.[૭૭]

ઘન પણ પ્રમાણમાં ઓછું સિનિગ્ધ એવું ઉપલું લાવારસ આવરણ- એસ્થેનોસ્ફિઅર પર આ ટેકટોનિક પ્લેટો ગતિ કરતી હોય છે. આ લાવારસ પ્લેટોની સાથે વહી શકે છે તેમ જ ગતિ કરી શકતો હોય છે. ,[૭૮] અને તેની ગતિ, પૃથ્વીના લાવારસ આવરણ (Earth's mantle)માંની ગરમી પ્રસારણની ગતિવિધિઓ સાથે સીધી રીતે જોડાયેલી હોય છે.

ટૅકટોનિક પ્લેટો પૃથ્વીના પટ પર ગતિ કરતી હોવાથી મહાસાગરના તળિયું, તેની એકબીજાની તરફ કેન્દ્રગામી ગતિ કરતી સીમાઓથી સબડકટ (subducted) થાય છે. તો એકબીજાથી વિરુદ્વ દિશામાં ગતિ કરતી સીમાઓ પર પેટાળમાંથી ધખધખતો લાવારસ બહાર આવવાથી દરિયાની વચ્ચે ગિરિમાળા (mid-ocean ridge) રચાય છે. આ પ્રકારની સતત ચાલતી રહેતી પ્રક્રિયાઓથી દરિયાઈ પોપડો (oceanic crust) સતત લાવારસમાં ફરીથી પરિવર્તિત થતો રહે છે. આ જ કારણોસર, મોટા ભાગના મહાસાગરોનું તળિયું (દરિયાઈ પોપડો) 1000 લાખ વર્ષો કરતાં ઓછી ઉંમર ધરાવે છે. પશ્ચિમ પૅસિફિક મહાસાગરમાં સૌથી જૂનો દરિયાઈ પોપડો મળી આવ્યો છે. આ દરિયાઈ પોપડાની ઉંમર આશરે 2000 લાખ વર્ષ ધારવામાં આવે છે. [૭૯][૮૦] સરખામણી કરીએ તો સૌથી પુરાણો ખંડીય પોપડો 40300 લાખ વર્ષ જૂનો છે.[૮૧]


પૃથ્વીની મુખ્ય પ્લેટો [૮૨]
Plates tect2 en.svg

પૃથ્વીની મુખ્ય પ્લેટો દર્શાવતો નકશો
પ્લેટનું નામ વિસ્તાર
106 km²
આફ્રિકન પ્લેટ (African Plate)[note ૧૩] 78.0
એન્ટાર્કટિક પ્લેટ (Antarctic Plate) 60.9
ઓસ્ટ્રેલિયન પ્લેટ (Australian Plate) 47.2
યુરેશિયન પ્લેટ (Eurasian Plate) 67.8
ઉત્તર અમેરિકી પ્લેટ (North American Plate) 75.9
દક્ષિણ અમેરિકી પ્લેટ (South American Plate) 43.6
પૅસિફિક પ્લેટ (Pacific Plate) 103.3

અન્ય નોંધપાત્ર પ્લેટોમાં ભારતીય પ્લેટ (Indian Plate), અરેબિયન પ્લેટ (Arabian Plate), કૅરેબિયન પ્લેટ (Caribbean Plate), દક્ષિણ અમેરિકા (South America)ના પશ્ચિમ કિનારાની બીજી તરફ આવેલી નાઝ્કા પ્લેટ (Nazca Plate) અને એટલાન્ટિક મહાસાગર (Atlantic Ocean)માં દક્ષિણે આવેલી સ્કોટિયા પ્લેટ (Scotia Plate)ને ગણી શકાય. 500 અને 550 લાખ વર્ષો અગાઉ ભારતીય પ્લેટ અને ઓસ્ટ્રેલિયન પ્લેટ ખરેખર જોડાયેલી હતી. 75 મિમી./વર્ષ[૮૩]ની ઝડપે ગતિ કરતી કોકોઝ પ્લેટ (Cocos Plate) અને 52–69 મિમી./વર્ષની ઝડપે ગતિ કરતી પૅસિફિક પ્લેટ, સૌથી ઝડપી ગતિ કરતી દરિયાઈ પ્લેટો છે. તેનાથી બીજા અંતિમે, આશરે 21 મિમી./વર્ષની ઝડપે ગતિ કરતી યુરેશિયન પ્લેટ સૌથી ધીમી ગતિ કરતી પ્લેટ છે. [૮૪]


સપાટી[ફેરફાર કરો]

પૃથ્વીના ભૂ-પ્રદેશ (terrain)ની રચના સ્થળે સ્થળે જુદી જોવા મળે છે. પૃથ્વીની સપાટીનો આશરે 70.8%[૮૫] ભાગ પાણીથી ઘેરાયેલો છે. સમુદ્રમાં જતી ખંડીય કાંધી (continental shelf) પણ મોટા ભાગે દરિયાઈ સપાટીની નીચે ડૂબેલી છે. જયાં જયાં આ સપાટીઓ ભેગી થઈ છે ત્યાં પર્વતો બન્યા છે, જેમ કે દરિયાની વચ્ચે રચાયેલી ગિરિમાળા (mid-ocean ridge)ઓ તેમ જ દરિયાના પેટાળમાંના જવાળામુખી (volcano)ઓ,[૬૦] દરિયાઈ ખાઈ (oceanic trench), દરિયામાં આવેલી ખીણ (submarine canyon), દરિયાઈ પ્લેટુ(સમથળ પ્રદેશ) (oceanic plateau) અને અગાધ ઊંડાં મેદાનો (abyssal plain). પાણીથી ઘેરાયેલા ન હોય તેવા બાકીના 29.2% પર પર્વતો (mountains), રણ (deserts), મેદાનો (plain), પ્લેટુ (સમથળ પ્રદેશો) (plateau) અને અન્ય ભૂ-રચનાઓ (geomorphologies) જોવા મળે છે.


ટૅકટોનિકસ અને ધોવાણ (tectonics and erosion)ની અસરોથી પૃથ્વીની સપાટી અમુક ભૂસ્તરશાસ્ત્રીય સમયાંતરોએ ફેરરૂપાંતરણ પામતી રહે છે. પ્લેટ ટૅકટોનિકસના કારણે જોડાતી અથવા તૂટતી સપાટીઓનો આધાર ભેજપાત કે વરસાદ (precipitation)થી લઈને થર્મલ સાયકલ અને રાસાયણિક અસરો સુધીના સ્થિર હવામાન (weathering) પર રહે છે. હિમરાશિ (Glaciation) એકઠી થવી, કિનારાનું ધોવાણ (coastal erosion), પરવાળાંના ખડક (coral reef) કે ટાપુ બનવા અને તે ઉપરાંત વિશાળ ઉલ્કાના પડવાથી ઊભી થતી અસરો[૮૬] પણ ભૂ-પ્રદેશને ફેર-આકાર આપવામાં મહત્ત્વનો ભાગ ભજવે છે.



ખંડીય પોપડા (continental crust) ગ્રેનાઈટ (granite) અને એન્ડેસાઈટ (andesite) જેવા ઓછી ઘનતા ધરાવતા અગ્નિકૃત ખડકો (igneous rock)થી બનેલા છે. મુખ્યત્વે દરિયાનું તળિયું જેનાથી બને છે તે બૅસાલ્ટ (basalt) જેવા વધુ ઘનતા ધરાવતા લાવાથી બનેલા ખડકો ઓછા પ્રમાણમાં જોવા મળે છે. [૮૭] જળકૃત ખડક (Sedimentary rock) એ કાંપ એકઠો થવાથી અને પછી પાણીના દબાણથી બંધાઈને બનતો ખડક છે. ભૂકવચનો માત્ર ૫% હિસ્સો જ જળકૃત ખડકોનો બનેલો હોવા છતાં ખંડીય સપાટીઓનો આશરે 75% જેટલો ભાગ જળકૃત ખડકોથી બનેલો છે.[૮૮] પૃથ્વી પર મળી આવતા ત્રીજા પ્રકારના ખડક છે રૂપાંતરિત ખડક (metamorphic rock). ખૂબ વધુ દબાણ અથવા ઊંચું તાપમાન અથવા આ બંનેના કારણે જે-તે પ્રકારનો ખડક રૂપાંતરણ પામીને જે ખડક બને તેને રૂપાંતરિત ખડક કહે છે. પૃથ્વીની સપાટી પર વિપુલ પ્રમાણમાં મળી આવતા સિલિકેટ ખનિજોમાં સ્ફટિક (quartz), ફલેડ્સ્પાર (feldspar), એમ્ફીબોલ (amphibole), અબરખ (mica), પાયરોકિસન (pyroxene) અને ઓલિવીયન (olivine)નો સમાવેશ થાય છે. [૮૯] સામાન્ય કાર્બનિટ ખનિજોમાં કૅલકાઈટ (calcite) (ચૂના (limestone)માં મળી આવે છે), અરાગોનાઈટ (aragonite) અને ડૉલમાઈટ (મૅગ્નેશિયાવાળો ચૂનાનો પથ્થર) (dolomite)નો સમાવેશ થાય છે.[૯૦]


ભૂકવચ (pedosphere) એ પૃથ્વીનું સૌથી બહારનું સ્તર છે, જે માટી (soil)નું બનેલું છે અને માટી બનવાની પ્રક્રિયાઓ (soil formation processes) પર આધારિત છે. શિલાવરણ (lithosphere), વાયુમંડળ, જળમંડળ (hydrosphere) અને જીવમંડળની વચ્ચે સરહદ પર તે અસ્તિત્વ ધરાવે છે. હાલમાં, કુલ જમીનમાંથી 13.31% જમીન ખેતીલાયક છે અને તેમાંથી માત્ર 4.71% પર કાયમી પાક લઈ શકાય છે. [૧૪] અત્યારે પૃથ્વીની જમીન સપાટીના આશરે 40%નો ઉપયોગ ખેતી માટે અને ગોચર માટે થાય છે અથવા બીજા શબ્દોમાં, આશરે 1.3×૧૦7 કિ.મી.²નો ખેતી માટે અને 3.4×૧૦7 કિ.મી.²નો ગોચર માટે ઉપયોગ થાય છે. [૯૧]


મૃત સમુદ્ર (Dead Sea)ના દરિયાની સપાટી પરથી સૌથી નીચા બિંદુ -418 મી.થી લઈને એવરેસ્ટ પર્વત (Mount Everest)ના 2005 મુજબના દરિયાની સપાટી પરથી સૌથી ઊંચા બિંદુ 8848 મી. સુધી પૃથ્વીની જમીનની સપાટી બદલાતી રહેતી હોય છે. દરિયાની સપાટીથી જમીનની સરેરાશ ઊંચાઈ 840 મી. છે. [૯૨]


જળમંડળ[ફેરફાર કરો]

પૃથ્વીની સપાટીની ઊંચાઈ દર્શાવતો હિસ્ટોગ્રામ (histogram). પૃથ્વીની સપાટીનો આશરે 71% ભાગ પાણીથી ઘેરાયેલો છે.

પૃથ્વીની સપાટી પર પાણીની વિપુલ માત્રા એ પૃથ્વીનું એક એવું અદ્વિતીય પાસું છે જે તેને સૌરમંડળમાં "ભૂરા ગ્રહ’ તરીકે બીજા ગ્રહોથી જુદી પાડે છે. પૃથ્વીનું જળમંડળ મુખ્યત્વે મહાસાગરોનું બનેલું છે પણ આમ જોવા જઇએ તો તેમાં વિશ્વના તમામ જળાશયો- ભૂમધ્ય સમુદ્રો, સરોવરો, તળાવ, નદી અને 2,000 મી.ના ઊંડાણે આવેલા ભૂતળના જળનો પણ સમાવેશ થાય છે. દરિયામાંની સૌથી ઊંડી જગ્યા પૅસિફિક મહાસાગર (Pacific Ocean)માં મરિઆના ખાઈ (Mariana Trench)ની ચેલેન્જર ડીપ (Challenger Deep) છે, જે -10,911.4 મી. ઊંડાઈ ધરાવે છે.[note ૧૪][૯૩]મહાસાગરોની સરેરાશ ઊંડાઈ 3,800 મી. હોય છે, જે ખંડોની સરેરાશ ઊંચાઈ કરતાં ચારગણી છે. [૯૨]


મહાસાગરોનું દળ લગભગ 1.35×૧૦18 મેટ્રિક ટન (metric ton) અથવા તો પૃથ્વીના કુલ દળના 1/4400 ભાગ જેટલું છે અને તે 1.386×૧૦9 કિ.મી.3 જેટલો વિસ્તાર રોકે છે.

જો પૃથ્વી પર જમીન એકસરખી સપાટ રીતે વિસ્તરેલી હોત તો પાણીની સપાટી 2.7 કિ.મી. કરતાં પણ વધુ ઊંચાઈએ હોત. [note ૧૫] આશરે 97.5% પાણી ખારું/ક્ષારયુકત છે જયારે બાકીનું 2.5% પાણી તાજું છે. આ તાજા પાણીનો મોટો ભાગ, આશરે 68.7%, અત્યારે બરફ સ્વરૂપે છે.[૯૪]


મહાસાગરોના કુલ દળનો લગભગ 3.5% ભાગ નમક (salt)નો બનેલો છે. નમકનો આ જથ્થો કાં તો જવાળામુખીમાંથી મુકત થયો હોય છે અથવા તો પછી ઠંડા પડેલા અગ્નિકૃત ખડકોમાંથી ખેંચાયેલો હોય છે. [૯૫] ઘણી દરિયાઈ જીવ-સૃષ્ટિના અસ્તિત્વ માટે આવશ્યક એવા વાતાવરણમાંના ઓગળેલા વાયુઓ પણ મહાસાગરમાં સંગ્રાહાયેલા હોય છે. [૯૬] વિશ્વના હવામાનને દરિયાના પાણી ખૂબ મહત્ત્વપૂર્ણ રીતે અસર કરે છે,


મહાસાગરો ગરમીના વિશાળ સંગ્રહસ્થાન (heat reservoir) તરીકે કામ કરતા હોવાથી [૯૭] દરિયાઈ તાપમાનના વિતરણમાં ફેરફારોથી આબોહવામાં નોંધપાત્ર બદલાવો આવે છે, જેમ કે અલ નીનો- દક્ષિણી આવર્તનો (El Niño-Southern Oscillation).[૯૮]

વાતાવરણ / વાયુમંડળ[ફેરફાર કરો]

લગભગ 8.5 કિ.મી. ઊંચાઈ (scale height) સુધી, પૃથ્વીની સપાટી પર વાતાવરણનું દબાણ (atmospheric pressure) સરેરાશ 101.325 કેપીએ(કિલો પાસ્કલ) (kPa) જેટલું હોય છે. [૩] તેમાં 78% નાઈટ્રોજન અને 21% ઑકિસજન હોય છે અને તે સિવાય ખૂબ ઓછા પ્રમાણમાં તેમાં પાણીની વરાળ, કાર્બન ડાયોકસાઈડ અને અન્ય વાયુરૂપ પરમાણુઓ પણ હોય છે. હવામાન અને મોસમના કેટલાક બદલાવો અનુસાર તથા અક્ષાંશ (latitude) સાથે અધોમંડળ (ટ્રોપોસ્ફિઅર) (troposphere)ની ઊંચાઈ બદલાય છે જે ધ્રુવો પર 8 કિ.મી.થી માંડીને વિષુવવૃત્ત પર 17 કિ.મી. સુધી બદલાતી રહે છે.[૯૯]


પૃથ્વી પરના જીવમંડળના કારણે, વાયુમંડળ (atmosphere)માં નોંધપાત્ર બદલાવ આવ્યો છે. 2.7 અબજ વર્ષ પહેલાં ઑકિસજનની હાજરીમાં થતી પ્રકાશસંશ્ર્લેષણ (Oxygenic photosynthesis)ની ક્રિયાની શરૂઆત થઈ હતી. તે સમયે મુખ્યત્વે નાઈટ્રોજન-ઑકિસજન વાતાવરણ (atmosphere) રચાયું (forming) હતું, જે આજે પણ અસ્તિત્વ ધરાવે છે. આ બદલાવના કારણે ઍરોબિક જીવસૃષ્ટિ (વાયુમાં જીવતાં સૂક્ષ્મજીવો) (aerobic organisms) વિપુલ પ્રમાણમાં વિકસી શકી તેમ જ ઓઝોન સ્તરનું નિર્માણ થયું. પૃથ્વીનું લોહચુંબકીય ક્ષેત્ર, ઍરોબિક જીવસૃષ્ટિ અને ઓઝોન સ્તરે આ ત્રણેની સંયુકત અસરના પરિણામે પારજાંબલી (ultraviolet) સૌર કિરણોત્સર્ગ (solar radiation) અવરોધાયા- પૃથ્વી પર પહોંચતા અટકયા અને પરિણામે પૃથ્વી પર જીવન શકય બન્યું. પાણીનું વરાળમાં રૂપાંતર, ઉપયોગી ગૅસ પૂરાં પાડવા, નાની ઉલ્કાઓ (meteor) સપાટી પર અથડાય તે પહેલાં તેને ભસ્મીભૂત કરવી અને મધ્યમ તાપમાન જાળવી રાખવું એ પૃથ્વી પર જીવનને લાભદાયી નીવડતી વાતાવરણની અન્ય મહત્ત્વપૂર્ણ અસરો છે. [૧૦૦] આ છેલ્લી બાબત ગ્રીન હાઉસ અસર (greenhouse effect) તરીકે જાણીતી છેઃ વાતાવરણમાંના સૂક્ષ્મ રજકણો/પરમાણુઓ જમીન પરથી ફેંકાતી થર્મલ ઊર્જાને ઝીલે છે અને આ રીતે સામાન્ય તાપમાનને વધારે છે. પૃથ્વીના વાતાવરણમાં કાર્બન ડાયોકસાઈડ, પાણીની વરાળ, મિથેન અને ઓઝોન એ મુખ્ય ગ્રીન હાઉસ વાયુઓ (greenhouse gas) છે. ગરમી રોકી રાખતી આ અસર વિના, પૃથ્વીની સપાટી પરનું સરેરાશ તાપમાન -18 ડિગ્રી સેલ્સિયસ પહોંચી જાત અને જીવનના અસ્તિત્વની કોઈ સંભાવના રહેત નહીં. [૮૫]


હવામાન અને આબોહવા[ફેરફાર કરો]

પૃથ્વીના વાતાવરણ/ વાયુમંડળને કોઈ ચોક્કસ સીમા નથી. એ ધીમે ધીમે પાતળું બનતું જાય છે અને છેવટે બાહ્ય અવકાશમાં વિલીન થઈ જાય છે.

વાયુમંડળના દળનો એક તૃતીયાંશ ભાગ, પૃથ્વીની સપાટીને અડીને પહેલાં 11 કિ.મી.માં સમાયેલો છે. સૌથી નીચેના સ્તરને અધોમંડળ (ટ્રોપોસ્ફિઅર) (troposphere) કહેવામાં આવે છે.સૂર્યની ગરમી આ સ્તરને તથા તેની નીચેની જમીનને તપાવે છે, જેના કારણે હવાનું વિસ્તરણ થાય છે.

આ ગરમ, ઓછી ઘનતાવાળી હવા પછી ઊંચે જાય છે અને તેની જગ્યા વધુ ઘનતાવાળી ઠંડી હવા લે છે.

આમ વાતાવરણીય પરિભ્રમણ (atmospheric circulation), એટલે કે ગરમીની ઊર્જાનું ફેરવિતરણ, હવામાન અને આબોહવાનું સંચાલન કરે છે. [૧૦૧]


વાતાવરણના પરિભ્રમણમાં 30° અક્ષાંશથી નીચેના વિષુવવૃત્તીય વિસ્તારોમાં વાતા વ્યાપારી વાયુઓ (trade winds) અને 30° અને 60° વચ્ચેના મધ્ય-અક્ષાંશો પર વાતા પશ્ચિમી વાયુઓ (westerlies) મુખ્ય છે.

30° અને 60°.[૧૦૨]આબોહવા નિશ્ચિત કરવામાં મહાસાગરોના પ્રવાહો પણ અગત્યનો ભાગ ભજવે છે. આ પ્રવાહોમાં થર્મોહેલાઈન પરિભ્રમણ (thermohaline circulation) મુખ્ય છે જે વિષુવવૃત્તીય મહાસાગરોના ગરમ પ્રવાહોને ધ્રુવીય વિસ્તારો સુધી લઈ જાય છે. [૧૦૩]


ચિત્ર:Air masses 2.jpgવૈશ્વિક હવાના દળ (air mass)ના |left|thumbnail|300px|સ્રોત વિસ્તારો]] સપાટી પરના બાષ્પીભવનથી પેદા થયેલી પાણીની વરાળ ચક્રાકાર પરિભ્રમણથી વાતાવરણમાં પરિવહન પામે છે.

જયારે વાતાવરણના પરિબળોના કારણે ગરમ, ભેજવાળી હવા ઊંચકાય છે ત્યારે તેમાંનું પાણી સંકોચાય છે અને સપાટી પર ભેજપાત (precipitation) રૂપે સ્થિર થાય છે. [૧૦૧] મોટા ભાગનું પાણી વળી પાછું નદીઓ થકી નીચે આવે છે અને સામાન્ય રીતે મહાસાગરોમાં પાછું ઠલવાય છે અથવા તો તળાવ/સરોવર (lake)માં જમા થાય છે. જમીન પર જીવન ટકાવવા પાછળ આ જળચક્ર (water cycle) આવશ્યક ભૂમિકા ભજવે છે, એટલું જ નહીં પણ એક પછી એક ભૂસ્તરશાસ્ત્રીય સમયગાળાઓ દરમ્યાન સપાટી ધોવાણ પાછળ પણ તે એક મુખ્ય પરિબળ છે. ભેજપાત / વરસાદની ભાત ખૂબ વ્યાપક રીતે, દર વર્ષે અમુક મીટર પાણીથી લઈને મિલીમીટર કરતાં પણ ઓછું એમ બદલાતી જોવા મળે છે.

દરેક વિસ્તારમાં એકંદર ભેજપાત / વરસાદ કેટલો થશે તેનો આધાર વાતાવરણીય પરિભ્રમણ (Atmospheric circulation), ભૂ-પ્રદેશની રચના અને તાપમાનના ફેરફારો પર રહે છે.[૧૦૪]


એકંદરે સરખી આબોહવા ધરાવતા અમુક ચોક્કસ અક્ષવૃત્તોમાં પૃથ્વીને વહેંચી શકાય છે. વિષુવવૃત્તથી ધ્રુવીય પ્રદેશો સુધી, પૃથ્વી પર ઉષ્ણકટિબંધ (tropical) (અથવા વિષુવવૃત્તીય), સમશીતોષ્ણકટિબંધ (subtropical), સમશીતોષ્ણ (temperate) અને ધ્રુવીય (polar) આબોહવા એમ વિસ્તરેલા છે. [૧૦૫] પ્રમાણમાં હવાના એકસરખા દળની લાક્ષણિકતા ધરાવતા વિસ્તારો મુજબ તાપમાન અને ભેજપાત/વરસાદના આધારે પણ આબોહવાને વર્ગીકૃત કરી શકાય. કૉપ્પેન આબોહવા વર્ગીકરણ (Köppen climate classification) પદ્ધતિ સૌથી વધુ પ્રચલિત છે (વ્લાદીમીર કૉપ્પેન (Wladimir Köppen)ના વિદ્યાર્થી રુડોલ્ફ ગેઈગરે સુધારેલી પદ્ધતિ) જેમાં મુખ્ય પાંચ પ્રકારો (ભેજવાળા કટિબંધો, શુષ્ક (arid), મધ્યમ ભેજ ધરાવતા અક્ષાંશો, ખંડીય (continental) અને ઠંડા ધ્રુવ) છે અને તેને પણ ફરીથી વધુ ચોક્કસ પેટા-પ્રકારોમાં વહેંચવામાં આવ્યા છે.[૧૦૨]

ઊર્ધ્વ વાયુમંડળ[ફેરફાર કરો]

ભ્રમણકક્ષા પરથી લેવાયેલી આ તસવીર પૃથ્વીના વાયુમંડળને કારણે આંશિક રીતે ઢંકાયેલા પૂર્ણ ચંદ્રને દર્શાવે છે. નાસા(NASA) (NASA)ની તસવીર.

અધોમંડળ (ટ્રોપોસ્ફિઅર)ની ઉપરનું વાતાવરણ સામાન્ય રીતે ઊર્ધ્વમંડળ (સ્ટ્રેટોસ્ફિઅર) (stratosphere), મધ્યમંડળ (મેસોસ્ફિઅર) (mesosphere) અને ઉષ્ણમંડળ (થર્મોસ્ફિઅર) (thermosphere)માં વહેંચાયેલું હોય છે. [૧૦૦] આ દરેક સ્તર વિલીન થવાનો દર (lapse rate) જુદો જુદો ધરાવે છે, જે ઊંચાઈ સાથે બદલાતા તાપમાનના દરને નિશ્ચિત કરે છે. આ સ્તરો પછી બાહ્યમંડળ (એકસોસ્ફિઅર) (exosphere) આવેલું છે જે ચુંબકીયમંડળ (magnetosphere)માં વિલીન થાય છે. અહીં પૃથ્વીનાં ચુંબકીય ક્ષેત્રો સૌર વાયુ (solar wind)ના સંપર્કમાં આવે છે. [૧૦૬]પૃથ્વી પર જીવન ટકાવી રાખતો વાતાવરણનો એક અગત્યનો ભાગ ઓઝોન સ્તર છે. અધોમંડળના હિસ્સારૂપ આ સ્તર, પૃથ્વીની સપાટીને સૂર્યના નીલાતીત કિરણોથી આંશિક રીતે કવચ આપે છે. પૃથ્વીની સપાટીથી 100 કિ.મી. ઉપર, કારમૅન રેખા (Kármán line)ને વાયુમંડળ અને અવકાશ વચ્ચેની સીમા તરીકે પ્રાયોગિક ધોરણે કલ્પવામાં આવી છે. [૧૦૭]


થર્મલ ઊર્જાને કારણે, પૃથ્વીના વાયુમંડળની બહારની ધાર પરના કેટલાક રજકણોનો વેગ એટલો વધે છે કે તે પૃથ્વીના ગુરુત્વાકર્ષણમાંથી છટકી (escape) શકે છે. આ રીતે ધીમી પણ સાતત્યપૂર્ણ ગતિથી વાયુમંડળ અવકાશમાં ભળતું રહે છે (leakage of the atmosphere into space). અસ્થિર હાઇડ્રોજન (hydrogen) અણુ પ્રમાણમાં હલકો હોવાથી તે વધુ ઝડપથી છટકવા માટેનો વેગ (escape velocity) મેળવી શકે છે અને અન્ય વાયુઓની સાપેક્ષે વધુ પ્રમાણમાં અવકાશમાં મુકત થાય છે. [૧૦૮] અવકાશમાં આ રીતે હાઈડ્રોજન ભળતો રહેવાથી પૃથ્વીની શરૂઆતની ઘટતી (reducing) સ્થિતિમાંથી તેની અત્યારની ઓકિસડાઈઝિંગ (oxidizing) સ્થિતિ પ્રાપ્ત થઈ છે. પ્રકાશસંશ્વ્લેષણના કારણે ઑકિસજનનો મુકત જથ્થો પ્રાપ્ત થાય છે પરંતુ હાઇડ્રોજન જેવા રિડયુસિંગ એજન્ટ છુટા થવાની પ્રક્રિયા વાયુમંડળમાં વ્યાપક રીતે એકઠા થતા ઑકિસજન માટે અત્યંત આવશ્યક શરત છે. [૧૦૯]

એટલે પૃથ્વી પર વિકસેલા જીવનની પ્રકૃતિ, પૃથ્વીના વાયુમંડળમાંથી છટકતા હાઈડ્રોજનથી પ્રભાવિત હોઈ શકે છે. [૧૧૦] અત્યારના સારો એવો ઑકિસજન જથ્થો ધરાવતા વાતાવરણમાં, હાઈડ્રોજન તેને છટકવાની તક મળે તે પહેલાં પાણીમાં રૂપાંતરિત થઈ જાય છે.અને એના બદલે બાહ્ય વાતાવરણમાં મિથેન (methane)ના તૂટવાથી મોટા ભાગનો હાઈડ્રોજન છુટો પડે છે. [૧૧૧]


ચુંબકીય ક્ષેત્ર[ફેરફાર કરો]

દ્વિ-ધ્રુવ આસપાસ પૃથ્વીનું ચુંબકીય ક્ષેત્ર (Earth's magnetic field) રચાય છે.

પૃથ્વીનું ચુંબકીય ક્ષેત્ર (Earth's magnetic field), પૃથ્વીના ભૌગોલિક ધ્રુવોની નજીક આવેલા ચુંબકીય દ્વિ-ધ્રુવો (magnetic dipole)માં રચાયેલું છે. ડાયનેમો સિદ્ધાન્ત (dynamo theory) અનુસાર, પૃથ્વીના પીગળેલા બાહ્ય ગર્ભઆવરણમાં આ ચુંબકીય ક્ષેત્ર રચાય છે. ત્યાં ગરમીના કારણે વાહક સામગ્રીઓમાં ગરમી પ્રસારણની ક્રિયા થાય છે, જે વિદ્યુતપ્રવાહ પેદા કરે છે.અને તેના પરિણામે પૃથ્વીનું ચુંબકીય ક્ષેત્ર ઊભું થાય છે. ગર્ભમાં થતી ગરમી પ્રસારણની ક્રિયાઓ સ્વભાવે અત્યંત અસ્તવ્યસ્ત હોય છે અને સમયાંતરે તેની ગોઠવણી પણ બદલાતી હોય છે. આથી અનિશ્ચિત અંતરાલોએ, એકંદરે દરેક 10 લાખ વર્ષો પછી ચુંબકીય ક્ષેત્ર પરિવર્તન(ઊથલો) (field reversals) થાય છે. આવું સૌથી છેલ્લું ક્ષેત્ર પરિવર્તન આશરે 700,000 વર્ષો અગાઉ થયું હતું. [૧૧૨][૧૧૩]


આ ક્ષેત્ર ચુંબકીયમંડળ (મેગ્નેટોસ્ફિઅર) (magnetosphere) રચે છે જે સૌર વાયુ (solar wind)માંના રજકણોની દિશા બદલે છે. બાઉ શોક (bow shock)ની સૂર્ય તરફની ધાર પૃથ્વીથી આશરે 13 ગણી ત્રિજયા જેટલા અંતરે આવેલી છે.ચુંબકીય ક્ષેત્ર અને સૌર વાયુ વચ્ચેની અથડામણથી બે સમાનકેન્દ્રી વીજભારયુકત રજકણો (charged particle)નોવૃષભ (torus) આકારનો વિસ્તાર- વાન ઍલન કિરણોત્સર્ગ પટ્ટો (Van Allen radiation belt) રચાય છે. જયારે આ ચુંબકીય ધ્રુવો પરથી પ્લાઝમા (plasma) પૃથ્વીના વાતાવરણમાં પ્રવેશે છે ત્યારે મેરુ જયોતિ (aurora) રચાય છે. [૧૧૪]


ભ્રમણકક્ષા અને પરિભ્રમણ[ફેરફાર કરો]

પરિભ્રમણ[ફેરફાર કરો]

પૃથ્વીની ધરીનું એક તરફ નમેલા હોવું (અથવા ત્રાંસા હોવું (obliquity)) અને તેનો પરિભ્રમણ ધરી (rotation axis) તથા ભ્રમણકક્ષા (plane of orbit) સાથે સંબંધ.

સૂર્ય ફરતે પરિભ્રમણ માટે પૃથ્વીને લાગતો સમય; સરેરાશ સૌર દિવસ; જે સરેરાશ સૌર સમય પ્રમાણે 86,400 સેકન્ડ છે. ભરતી-ઓટના વેગમાં વધારો (tidal acceleration) થવાથી પૃથ્વીનો સૌર દિવસ હવે 19મી સદી કરતાં સહેજ વધુ લાંબો થયો છે અને તેથી એસઆઈ (SI) સેકન્ડ કરતાં આ સેકન્ડો સહેજ વધુ લાંબી હોય છે.[૧૧૫]

[[આંતરરાષ્ટ્રીય પૃથ્વી પરિભ્રમણ અને સંદર્ભ પદ્ધતિઓ સેવા (ઈન્ટરનેશનલ અર્થ રોટેશન એન્ડ રેફરન્સ સિસ્ટમ્સ સર્વિસ)]] (International Earth Rotation and Reference Systems Service) દ્વારા સ્થિર તારા (fixed star) સાપેક્ષે પૃથ્વીના પરિભ્રમણ સમયને તારાઓનો દિવસ કહેવામાં આવે છે, જે 86164.098903691 secondsસૌર સમય (યુટી1)નો સરેરાશ સમય છે અથવા 23h 56m 4.098903691s. [૨][note ૧૬] સરેરાશ વસંતસપાત (equinox) વહેલો થવો (precessing) અથવા તેમાં ફેરફાર થવો, જેને ખોટી રીતે તારાની ગતિથી મપાતો દિવસ (sidereal day) કહેવામાં આવે છે તે 86164.09053083288 seconds સરેરાશ સૌર સમય (યુટી1) છે(23h 56m 4.09053083288s).[૨] આમ, તારાની ગતિથી મપાતો દિવસ, તારા દિવસ કરતાં આશરે 8.4 એમએસ (ms.) ટૂંકો હોય છે. [૧૧૬]1623–2005[૧૧૭] અને 1962–2005[૧૧૮]ના સમયગાળાઓ માટે આઈઈઆરએસ પાસે સૌર દિવસની સરેરાશ લંબાઈ એસઆઈ સેકન્ડોમાં ઉપલબ્ધ છે.


વાયુમંડળમાંની ઉલ્કાઓ (meteor) અને નીચી ભ્રમણકક્ષા પર ફરતા ઉપગ્રહો સિવાય, પૃથ્વીના આકાશમાં અવકાશી પદાર્થોની દેખીતી ગતિ પશ્ચિમમાં 15°/કલાક = 15’/મિનિટના દરથી જોવા મળે છે. તે દર બે મિનિટે સૂર્ય અથવા ચંદ્રના દેખીતા વ્યાસ જેટલી છે; સૂર્ય અને ચંદ્રનું દેખીતું કદ લગભગ સમાન જ છે. [૧૧૯][૧૨૦]

ભ્રમણકક્ષા[ફેરફાર કરો]

સરેરાશ દર 365.2564 સૌર દિવસોએ અથવા એક તારા વર્ષે (sidereal year), પૃથ્વી એકંદરે આશરે 1500 લાખ કિલોમીટર દૂરથી સૂર્યની પ્રદક્ષિણા કરે છે. એના કારણે, પૃથ્વી પરથી અન્ય તારાઓની સાપેક્ષે સૂર્ય દેખીતી રીતે આશરે 1°/દિવસના દરથી પૂર્વ તરફ જતો દેખાય છે અથવા દર 12 કલાકે સૂર્ય અથવા ચંદ્રના વ્યાસ મુજબ. આ ગતિના કારણે, પૃથ્વી પોતાની ધરી પર એક ચક્ર પૂરું કરે અને સૂર્ય પાછો યામ્યોત્તર વૃત્ત (meridian) પર આવે તેને એકંદરે 24 કલાક, એક સૌર દિવસ (solar day) લાગે છે. પૃથ્વીની પોતાની ભ્રમણકક્ષા પર ફરવાની ગતિ એકંદરે આશરે 30  કિ.મી./સેકન્ડ (108,000  કિ.મી./કલાક) છે, જે સાત મિનિટમાં પૃથ્વીના વ્યાસ જેટલું (આશરે 12,600  કિ.મી.) અંતર કાપી શકે તેટલી અને ચાર કલાકમાં ચંદ્ર સુધીનું અંતર (384,000  કિ.મી.) કાપવા જેટલી ઝડપી છે.[૩]


પૃષ્ઠભૂમિમાંના તારાઓ સાપેક્ષે ચંદ્ર, પૃથ્વી સાથે એક સામાન્ય બેરિસેન્ટર (barycenter) ફરતે દર 27.32 દિવસોએ ફરે છે. સૂર્યની ફરતે પૃથ્વી-ચંદ્રના પરિભ્રમણની સામાન્ય યુતિમાં, ગ્રહયુતિના મહિના (synodic month) દરમ્યાન નવા ચંદ્રથી નવા ચંદ્રનો ગાળો 29.53 દિવસોનો છે. આકાશી ઉત્તર ધ્રુવ (celestial north pole) પરથી જોઈએ તો પૃથ્વીની ગતિ, ચંદ્ર અને તેમની ધરી પરનું પરિભ્રમણ, તમામ ઘડિયાળના કાંટાથી વિરોધી દિશા (counter-clockwise)માં થતા દેખાય છે. સૂર્ય અને પૃથ્વી, બંનેના ઉત્તર ધ્રુવોની ઉપરથી કોઈક અનુકૂળ બિંદુથી જોઈએ તો પૃથ્વી ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં સૂર્યની આસપાસ ફરે છે. પૃથ્વીની પરિભ્રમણ કક્ષા અને ધરી એકદમ સીધા ગોઠવાયેલાં નથીઃ પૃથ્વીની ધરી, પૃથ્વી-સૂર્યની ભ્રમણકક્ષાથી લગભગ 23.5 ડિગ્રીના ખૂણે નમેલી છે (axis is tilted) અને પૃથ્વી-ચંદ્રની ભ્રમણકક્ષા, પૃથ્વી-સૂર્યની ભ્રમણકક્ષાથી આશરે 5 ડિગ્રીના ખૂણે નમેલી છે. જો આવું ન હોત તો દર બે અઠવાડિયે ગ્રહણ થતું હોત, એકવખત ચંદ્રગ્રહણ (lunar eclipse) અને એકવખત સૂર્યગ્રહણ (solar eclipse) એમ વારાફરતી ગ્રહણ થતા રહેતા હોત.[૧૨૧][૩]


પૃથ્વીનું હિલ સ્ફિઅર (Hill sphere) અથવા ગુરુત્વાકર્ષણ (gravitational) પ્રભાવી ક્ષેત્રની ત્રિજયા આશરે 1.5 જીએમ (અથવા 1,500,000 કિ.મી. (kilometer)) છે. [૧૨૨][note ૧૭] આ એવું મહત્તમ અંતર છે જયાં દૂર આવેલા સૂર્ય અને અન્ય ગ્રહો કરતાં પૃથ્વીનું ગુરુત્વાકર્ષણ બળ વધુ પ્રભાવી હોય છે. જયાં સુધી સૂર્યનું ગુરુત્વાકર્ષણ તેમને છોડાવે નહીં ત્યાં સુધી આ ત્રિજયાની અંદર હોય તેવા પદાર્થોએ પૃથ્વીની આસપાસ ફરવું જ પડે છે.


પૃથ્વી, સમગ્ર સૌર મંડળ સાથે અંતરિક્ષના તારામંડળ (galaxy)માંની આકાશગંગા (Milky Way)માં આવેલી છે, જે તારામંડળના કેન્દ્રથી આશરે 28,000 પ્રકાશ-વર્ષ (light years) દૂર અને ઓરિયન સ્પાઈરલ આર્મ (Orion spiral arm)માં તારામંડળના વિષુવવૃત્તીય વિસ્તાર (equatorial plane)થી આશરે 20 પ્રકાશ-વર્ષ ઉપર પરિભ્રમણ કરે છે.[૧૨૩]

ધરીનો કોણ અને ૠતુઓ[ફેરફાર કરો]

પૃથ્વીની ધરી નમેલી હોવાથી આખા વર્ષ દરમ્યાન કોઈ પણ સમયે પૃથ્વીની સપાટી પર પહોંચતો સૂર્યપ્રકાશ બદલાતો રહે છે. એના પરિણામે આબોહવામાં ૠતુ (season)-બદલાવ આવે છે. જયારે ઉત્તર ધ્રુવ સૂર્ય તરફ નમેલો હોય ત્યારે ઉત્તર ગોળાર્ધમાં ઉનાળો રહે છે અને જયારે એ બીજી દિશામાં નમેલો હોય ત્યારે શિયાળો રહે છે.

ઉનાળામાં દિવસ લાંબો રહે છે અને સૂર્ય આકાશમાં વધુ ઊંચે ચઢતો દેખાય છે.જયારે શિયાળામાં આબોહવા પ્રમાણમાં ઠંડી હોય છે અને દિવસો ટૂંકા હોય છે. ઉત્તર ધ્રુવના વર્તુળ (Arctic Circle) પર વર્ષનો અમુક ભાગ બિલકુલ સૂર્યપ્રકાશ પહોંચતો નથી અને ત્યાં અંતિમ સ્થિતિ કહેવાય તેવી ધ્રુવ રાત્રિ (polar night) સર્જાતી હોય છે. દક્ષિણ ધ્રુવ (South Pole), ઉત્તર ધ્રુવ કરતાં સદંતર વિરુદ્વ દિશામાં ગોઠવાયેલો હોવાથી દક્ષિણ ગોળાર્ધમાં ત્યારે તેનાથી બિલકુલ વિરોધી સ્થિતિ હોય છે.


મંગળ પરથી દેખાતા પૃથ્વી અને ચંદ્ર; તસવીર સૌજન્ય- માર્સ ગ્લોબલ સર્વેયર (Mars Global Surveyor). અવકાશમાંથી જોઈએ તો પૃથ્વી પણ ચંદ્રની કળાઓ (phases of the Moon) જેવી જુદી જુદી કળાઓમાંથી પસાર થતી જોઈ શકાય છે.

પરિભ્રમણ કક્ષામાં જયારે પૃથ્વીની ધરી સૂર્ય તરફ મહત્તમ નમેલી હોય અથવા તો સૂર્યથી મહત્તમ દૂર હોય તેવા અયન (solstice)ના આધારે તથા જયારે ધરીનો કોણની દિશા અને સૂર્યની દિશા બરાબર કાટખૂણે હોય તેવા સંપાતો (equinox)ના આધારે ખગોળશાસ્ત્રીય સંમેલનમાં ચાર ૠતુઓ નિશ્ચિત કરવામાં આવી છે. શિયાળુ અયન લગભગ ડિસેમ્બર 21ના અને ઉનાળુ અયન જૂન 21ની આસપાસ રચાય છે. તેવી જ રીતે વસંતસંપાત માર્ચ 20ની આસપાસ અને શરદસંપાત આશરે સપ્ટેમ્બર 23ની આસપાસ થાય છે. [૧૨૪]


લાંબા સમયથી પૃથ્વીની ધરીનો વળાંક પ્રમાણમાં સ્થિર છે. છતાં, તેના આ વળાંક 18.6 વર્ષોના મુખ્ય ગાળાઓએ અનિયમિત ગતિમાં સહેજ અક્ષવિચલન (nutation) પામે છે. સમયાંતરે પૃથ્વીની ધરીનું (કોણ નહીં પણ) અભિમુખ/દિશાસ્થિતિ પણ બદલાય છે. જેથી તે દરેક 25,800 વર્ષે થતું એક સંપૂર્ણ પરિભ્રમણ જલદી પૂરું કરે છે. આ અચનચલન (precessing)ને કારણે તારા વર્ષ અને ઉષ્ણકટિબંધીય વર્ષ (tropical year)માં ફેર આવે છે. પૃથ્વીના વિષુવવૃત્તીય ઢેકા પર સૂર્ય અને ચંદ્રના જુદા જુદા આકર્ષણને કારણે આ બંને ગતિ સર્જાતી હોય છે. પૃથ્વીના દષ્ટિકોણથી જોઈએ તો, તેના ધ્રુવો પણ સપાટી પર અમુક માઈલોનું અંતર ખસે છે. ધ્રુવોના આ ચલન (polar motion) પાછળ અનેક, ચક્રીય ઘટકો છે, જેને સામૂહિક રીતે કવાસીપિરીઓડિક ચલન (quasiperiodic motion) કહે છે. આ ચલનના વાર્ષિક ઘટકો ઉપરાંત, એક 14 મહિનાનું ચક્ર પણ તેનો ભાગ છે જેને ચાન્ડલર ધ્રુજારી (Chandler wobble) કહેવામાં આવે છે. દિવસની લંબાઈમાં આવતા ફેરફારની ઘટના પૃથ્વીની પોતાના ધરી પરના પરિભ્રમણની ગતિમાં આવતો ફેરફાર દર્શાવે છે. [૧૨૫]


આધુનિક સમયમાં, પૃથ્વીનું અર્કનીચ (perihelion) 3 જાન્યુઆરીની આસપાસ અને ઉચ્ચબિંદુ (aphelion) 4 જુલાઈની આસપાસ થાય છે. છતાં, અચનચલન (precession) અને મિલાનકોવિચ ચક્ર (Milankovitch cycles) નામે ઓળખાતી ચક્રીય ભાતો અનુસરતાં પરિભ્રમણ કક્ષાનાં અન્ય પરિબળોના કારણે આ તારીખો બદલાતી રહે છે. પૃથ્વી-સૂર્ય વચ્ચે બદલાતા રહેતા અંતરના પરિણામે, ઉચ્ચબિંદુની સાપેક્ષે અર્કનીચ વખતે 6.9%[૧૨૬] વધુ સૌર ઊર્જા પૃથ્વી પર પહોંચે છે. પૃથ્વી જયારે સૂર્યની સૌથી નજીક પહોંચે છે એ વખતે તેનો દક્ષિણ ગોળાર્ધ સૂર્ય તરફ નમેલો હોવાથી આખા વર્ષના પરિભ્રમણ દરમ્યાન ઉત્તર ગોળાર્ધ સૂર્ય પાસેથી જેટલી ઊર્જા મેળવે છે તેનાથી સહેજ વધુ ઊર્જા દક્ષિણ ગોળાર્ધ મેળવે છે. પરંતુ, ધરીના વળાંકને કારણે કુલ ઊર્જામાં જે બદલાવ આવે છે તેની સાપેક્ષે આ અસર ખૂબ ઓછી નોંધપાત્ર છે. દક્ષિણ ગોળાર્ધમાં પાણીનું પ્રમાણ વધુ હોવાથી મોટા ભાગની વધારાની ઊર્જા તેમાં શોષાઈ જાય છે. [૧૨૭]


ચંદ્ર[ફેરફાર કરો]

લાક્ષણિકતાઓ
વ્યાસ 3,474.8  કિ.મી.
2,159.2  માઇલ
દળ 7.349×૧૦22 કિ.ગ્રા.
8.1×૧૦19 (ટૂંકો)  ટન
અર્ધ-મુખ્ય અક્ષ (Semi-major axis) 384,400  કિ.મી.
238,700 માઇલ
ભ્રમણકક્ષાને લગતો સમયગાળો 27 ડી 7 એચ 43.7 એમ

ચંદ્ર એ પૃથ્વીના એક ચતુથાર્ંશ જેટલો વ્યાસ ધરાવતો, પ્રમાણમાં મોટો એવો જમીન ધરાવતા ગ્રહ (terrestrial) જેવો ઉપગ્રહ છે.તે પોતાના ગ્રહના કદની સાપેક્ષે સૌર મંડળમાં સૌથી મોટો ચંદ્ર છે.(વામન ગ્રહ (dwarf planet) પ્લુટો (Pluto) કરતાં ચૅરોન (Charon) પ્રમાણમાં મોટો છે.)પૃથ્વીના ચંદ્ર પરથી અન્ય ગ્રહોની આસપાસ ફરતા કુદરતી ઉપગ્રહોને "ચંદ્ર" કહેવામાં આવે છે.


પૃથ્વી અને ચંદ્ર વચ્ચેના ગુરુત્વાકર્ષી આકર્ષણને પરિણામે પૃથ્વી પર ભરતી-ઓટનાં મોજાં (tides) આવે છે. આ જ અસરના કારણે ચંદ્ર પર તેના ભરતી-ઓટનાં મોજાં બંધાઈ (tidal locking) ગયા છે; ચંદ્રને પૃથ્વીની પ્રદક્ષિણા કરતાં જેટલો સમય થાય તેટલો જ સમય પોતાની ધરી પર ફરતાં થાય છે. પરિણામે, પૃથ્વી પર હંમેશાં ચંદ્રની સમાન બાજુ જ જોવા મળે છે. ચંદ્ર પૃથ્વીની પ્રદક્ષિણા કરે ત્યારે સૂર્ય તેના વિવિધ પૃષ્ઠભાગોને પ્રકાશિત કરે છે જેના કારણે ચંદ્રની કળા (lunar phase)ઓ જોવા મળે છે; સૌર વિચ્છેદન (solar terminator)થી તેનો અંધકારભર્યો ભાગ અને પ્રકાશિત ભાગ જુદા પડતા હોય છે.


ચંદ્ર પૃથ્વી પર જે ભરતી-ઓટ (tidal interaction) સર્જે છે તેના કારણે દર વર્ષે આશરે 38 મિ.મી.ના દરથી ચંદ્ર પૃથ્વીથી દૂર જઈ રહ્યો છે. કરોડો વર્ષ પછી, આ સૂક્ષ્મ બદલાવો- તથા વર્ષે લગભગ 23µs (µs) જેટલો પૃથ્વીનો દિવસ લંબાવાની ઘટના- સરવાળે નોંધપાત્ર બદલાવોમાં પરિણમશે. [૧૨૮] ઉદાહરણ તરીકે, ડિવોનિયન (Devonian) સમયગાળામાં (આશરે 4100 લાખ વર્ષો અગાઉ), એક વર્ષમાં 400 દિવસ હતા, અને દરેક દિવસ 21.8 કલાક લાંબો હતો. [૧૨૯]


પૃથ્વીની આબોહવાનું નિયમન કરીને ચંદ્રે, પૃથ્વી પર જીવનના વિકાસને નાટકીય ઢબે પ્રભાવિત કર્યો છે. ચંદ્ર સાથે ભરતી-ઓટની ઘટનાને કારણે પૃથ્વીની ધરીનો વળાંક સ્થિર રહ્યો છે એવું પેલેઓન્ટોલોજિકલ (Paleontological) પુરાવાઓ અને કમ્પ્યૂટર વડે સર્જાયેલી પ્રતિકૃતિઓ દર્શાવે છે. [૧૩૦] જો પૃથ્વીના વિષુવવૃત્તીય ઢેકા પર સૂર્ય અને અન્ય ગ્રહોના કારણે પેદા થતો ફરવાનો વેગ (torque) આ રીતે ચંદ્રથી સ્થિર ન કરવામાં આવ્યો હોત તો પૃથ્વીની ધરી કદાચ ખાસ્સી અસ્થિર બની હોત અને લાખો/કરોડો વર્ષો પછી તેમાં જેમ મંગળના કિસ્સામાં બન્યું તેમ ખાસ્સા અંધાંધૂંધીભર્યા બદલાવો જોવા મળ્યા હોત એવું કેટલાક ફિલસૂફો માને છે. [૧૩૧] જો પૃથ્વીના પરિભ્રમણની ધરી ક્રાન્તિવૃત્ત (plane of the ecliptic) પાસે પહોંચત તો તેનાથી ખૂબ મોટા ૠતુ ફેરફારો સર્જાત જેના પરિણામે હવામાનમાં ખૂબ મોટા ફેરફારો આવત. પૃથ્વીનો એક ધ્રુવ ઉનાળા દરમ્યાન સીધો સૂર્ય તરફ રહેત અને શિયાળામાં સૂર્યથી તદ્દન વિરોધી દિશામાં રહેત.

આ અસરનો અભ્યાસ કરનારા ગ્રહોના વિજ્ઞાનીઓ (Planetary scientists)ના મતે તેના પરિણામે તમામ મોટા પ્રાણીઓ અને ઉચ્ચ વનસ્પતિ જીવો નાશ પામ્યા હોત. [૧૩૨] જો કે આ વિવાદાસ્પદ વિષય છે, પરંતુ પૃથ્વી જેવો જ પરિભ્રમણનો સમયગાળો (rotation period) અને ધરીનો વળાંક ધરાવતા, પરંતુ પૃથ્વીની જેમ પોતાનો મોટો ચંદ્ર અથવા પ્રવાહી ગર્ભ ન ધરાવતા મંગળના વધુ અભ્યાસથી આ બાબત કદાચ સ્પષ્ટ થશે.


પૃથ્વી પરથી જોઈએ તો ચંદ્ર, પૃથ્વીથી લગભગ સૂર્ય જેટલો જ દૂર અને દેખીતી રીતે સૂર્ય જેટલું જ કદ ધરાવતો લાગે છે. સૂર્ય, ચંદ્રથી 400 ગણો મોટો હોવા છતાં તે 400 ગણો દૂર પણ છે, એટલે આ બંને અવકાશી પદાર્થોનું કોણીય કદ (angular size) (અથવા તો ઘન કોણ (solid angle)) સરખું લાગે છે.[૧૨૦] આના પરિણામે પૃથ્વી પર સંપૂર્ણ અથવા કંકણાકૃત ગ્રહણો (eclipse) સર્જાય છે.


પૃથ્વી અને ચંદ્રના સાપેક્ષ કદ અને બંને વચ્ચેના અંતર અંગેનું માપ.


સૌથી વધુ વ્યાપક સ્વીકૃતિ પામેલી વિશાળ ગોળાની અસર અંગેની પૂર્વધારણા (giant impact theory) અનુસાર, પૃથ્વીના શરૂઆતના સમયમાં થેઈઆ નામના, મંગળના કદના એક પ્રોટોપ્લેનેટ (protoplanet)ના અથડાવાથી ચંદ્રનો ઉદ્ભવ થયો હતો. આ પૂર્વધારણા ચંદ્ર પર લોહતત્ત્વ અને હવામાં ઊડી જતા તત્ત્વોનો અભાવ અને તેનો પોપડો લગભગ તદ્દન પૃથ્વી જેવો જ હોવાની હકીકત (તથા અન્ય બાબતો) ટાંકે છે. [૧૩૩]


પૃથ્વીને ઓછામાં ઓછા બે સહ-ભ્રમણકક્ષીય નાના ગ્રહો (co-orbital asteroids) છે, 3753 ક્રૂઈટહ્ન (3753 Cruithne) અને 2002 એએ29 (2002 AA29). [૧૩૪]


વસવાટ યોગ્યતા[ફેરફાર કરો]

જે ગ્રહ પર જીવન ટકી શકે તેમ હોય, ભલે હજી ત્યાં જીવન ઉદ્ભવ્યું ન હોય, તેને વસવાટયોગ્ય કહેવામાં આવે છે. પૃથ્વી જીવન માટે, પ્રવાહી પાણી, જટીલ સજીવ અણુઓ ભેગા થઈ શકે તેવું વાતાવરણ અને ચયાપચયની ક્રિયા (metabolism) માટે પૂરતી ઊર્જા જેવી (અત્યારની સમજ મુજબ)આવશ્યક શરતો પૂરી પાડે છે.[૧૩૫] પૃથ્વી પર જીવન ઉદ્ભવવા અને ટકવા પાછળ, પૃથ્વીનું સૂર્યથી અંતર તેમ જ તેની લગભગ લંબગોળ જેવી પરિભ્રમણ કક્ષા, પરિભ્રમણનો દર, ધરીનો ઝુકાવ, ભૂસ્તરશાસ્ત્રીય ઇતિહાસ, ટકાવી રાખતું વાયુમંડળ અને સંરક્ષણાત્મક ચુંબકીય ક્ષેત્ર એમ તમામ પરિબળો કારણભૂત છે. [૧૩૬]


જીવમંડળ[ફેરફાર કરો]

પૃથ્વી પરના જીવોએ કયારેક "જીવમંડળ" રચ્યું હતું તેવું કહેવાય છે. સામાન્ય રીતે આ જીવમંડળની ઉત્ક્રાંતિ (evolving)ની શરૂઆત લગભગ 3.5 અબજ વર્ષો પહેલાં થઈ હોવાનું માનવામાં આવે છે. આખા બ્રહ્માંડમાં જયાં જીવનનું અસ્તિત્વ જાણવા મળ્યું હોય તેવો એક માત્ર ગ્રહ પૃથ્વી છે. પૃથ્વી જેવું જીવમંડળ મળવું કદાચ દુર્લભ (rare) છે એવું કેટલાક વિજ્ઞાનીઓ માને છે. [૧૩૭]


જીવમંડળ અમુક બાયોમ્સ (biome)માં વહેંચાયેલું છે, જેમાં બૃહદ્દ રીતે પ્રમાણમાં એકસરખા વનસ્પતિ અને પ્રાણીઓ વસે છે. જમીન પર અક્ષાંશ (latitude) અને દરિયાની સપાટીથી ઊંચાઈ આ બાયોમ્સને જુદા પાડે છે. ઉત્તર ધ્રુવ (Arctic), દક્ષિણ ધ્રુવ વર્તુળ (Antarctic Circle) અથવા ખૂબ ઊંચાઈએ આવેલા જમીનગત બાયોમ્સ પ્રમાણમાં નહિવત્, ઉજ્જડ કહેવાય તેટલી વનસ્પતિ અને પ્રાણીઓ ધરાવે છે, જયારે અક્ષાંશ પર જોવા મળતી પ્રજાતિઓની સૌથી વધુ વિવિધતા (latitudinal diversity of species) વિષુવવૃત્ત પર જોવા મળે છે.[૧૩૮]


કુદરતી સ્રોતો અને જમીનનો ઉપયોગ[ફેરફાર કરો]

મનુષ્ય પોતાના હેતુઓ માટે વાપરી શકે તેવા સ્રોતો પૃથ્વી પૂરા પાડે છે. તેમાંના કેટલાક સ્રોતો પુનર્જીવિત ન કરી શકાય તેવા (non-renewable resources) હોય છે, દા.ત. ખનિજ ઈંધણો (mineral fuels), જેને ટૂંકા ગાળામાં ફરીથી એકઠા કરવા મુશ્કેલ છે.


કોલસો (coal), ખનિજ તેલ/પેટ્રોલિયમ (petroleum), કુદરતી વાયુ (natural gas) અને મિથેન કલાથરેટ (methane clathrate) જેવા અશ્મિભૂત ઈંધણો (fossil fuel)નો જમા થયેલો વિશાળ જથ્થો પૃથ્વીના પોપડામાંથી મેળવવામાં આવે છે.માણસ જમા થયેલા ઈંધણોના આ જથ્થાનો ઉપયોગ ઊર્જા પેદા કરવા માટે તથા રાસાયણિક ઉત્પાદન પ્રક્રિયામાં પોષકજથ્થા તરીકે કરે છે. ધોવાણ (erosion) અને પ્લેટ ટેકટોનિકસની ક્રિયાઓને પરિણામે કાચી ધાતુની ઉત્પત્તિ (Ore genesis)ની પ્રક્રિયા થાય છે જેનાથી પૃથ્વીના પોપડામાં ખનિજ કાચી ધાતુ (ore)ઓના દ્રવ્યો પણ બંધાય છે. [૧૩૯] અનેક ધાતુ (metal)ઓ અને અન્ય ઉપયોગી ઘટકો (elements) માટે આ દ્રવ્યો કેન્દ્રીભૂત સ્રોતો રચે છે.


પૃથ્વીનું જીવમંડળ માણસને ઉપયોગી થાય તેવાં અનેક જૈવિક ઉત્પાદનો પેદા કરે છે, જેમાં ખોરાક, લાકડું, ઔષધી તત્ત્વો (pharmaceutical), ઑકિસજન અને કેટલાય સજીવ કચરાનું પુનઃચક્રીકરણ આવી જાય, અલબત્ત આ યાદી ઘણી લાંબી થઈ શકે તેમ છે. જમીન-આધારિત ઈકોસિસ્ટમ (ecosystem) પૃથ્વીના ઉપલા પોપડા (topsoil) અને તાજા પાણી પર જયારે મહાસાગરોની ઈકોસિસ્ટમ જમીન પર ધોવાઈને આવતા ઓગળેલા દ્રવ્યો પર આધારિત હોય છે. [૧૪૦] આશ્રયસ્થાનો (shelters) બાંધવા માટે બાંધકામ સામગ્રી (building material)નો ઉપયોગ કરીને મનુષ્યો પણ જમીન (land) પર રહેતા હોય છે. 1993માં મનુષ્ય દ્વારા થતો જમીનનો ઉપયોગ આશરે આ મુજબ હતોઃ

જમીનનો ઉપયોગ ટકા
ખેડાઉ જમીનઃ 13.13%[૧૪]
કાયમી પાક માટે વપરાતી જમીનઃ 4.71%[૧૪]
કાયમી ગોચર જમીનઃ 26%
વન અને જંગલપ્રદેશઃ 32%
શહેરી વિસ્તારોઃ 1.5%
અન્યઃ 30%

1993માં આશરે 2,481,250 કિ.મી.² જેટલી જમીન સિંચાઈ સુવિધા ધરાવતી હતી. [૧૪]


કુદરતી અને પર્યાવરણ સંબંધી સંકટો[ફેરફાર કરો]

વિશાળ વિસ્તારો ઉષ્ણકટિબંધના વંટોળિયા (cyclone), વાવંટોળિયા (હરિકેન) (hurricane) અથવા સમુદ્ર પર આવતા વંટોળિયા (ટાઈફૂન) (typhoon) જેવા આત્યંતિક હવામાન પ્રત્યે સંવેદનશીલ હોય છે, અને તેથી એ વિસ્તારોમાં જીવન પર તેનો ઘણો પ્રભાવ હોય છે. તો કેટલાક સ્થળો ધરતીકંપ (earthquake), ભૂસ્ખલન (landslide), ત્સુનામી (tsunami), જવાળામુખી ફાટવો (volcanic eruptions), વરસાદ સાથેનો વિનાશક વંટોળિયો (ટોર્નેડો) (tornado), સિન્કહોલ (sinkhole), બ્લિઝાર્ડ (blizzard), પૂર (flood), દુષ્કાળ (drought) અને બીજી આપત્તિઓ અને દુર્ઘટના (disaster)ઓ પ્રત્યે સંવેદનશીલ હોય છે.


ઘણા સ્થાનિક વિસ્તારો માનવસર્જિત હવા અને પાણીનું પ્રદૂષણ (pollution), ઍસિડનો વરસાદ (acid rain) અને ઝેરી તત્ત્વો, વનસ્પતિસૃષ્ટિનો અભાવ (ગોચર જમીનનું શોષણ (overgrazing), વનનાબૂદી (deforestation), રણ/વેરાન પ્રદેશોનું સર્જન (desertification)), કુદરતી પ્રાણીસૃષ્ટિ (wildlife) ગુમાવવી, પ્રજાતિઓનો વિનાશ (extinction), માટી /જમીનનું અધઃપતન (soil degradation), માટીના સ્તરમાં ઘટાડો, ધોવાણ તથા આક્રમણખોર પ્રજાતિઓ (invasive species)ના હુમલા પ્રત્યે સંવેદનશીલ હોય છે.


ઔદ્યોગિક એકમોમાંથી મુકત થતા કાર્બન ડાયોકસાઈડને કારણે માનવની ગતિવિધિઓને ગ્લોબલ વર્મિંગ (global warming) સાથે સીધો સંબંધ છે એવા વૈજ્ઞાનિક સર્વસંમતિ (scientific consensus) સધાઈ ચૂકી છે. જેના કારણે હિમસરિતા (glacier)ઓ અને બરફની ચટ્ટાનો (ice sheet) ઓગળવાના, વધુ આત્યંતિક તાપમાનો, હવામાનમાં નોંધપાત્ર બદલાવો અને વૈશ્વિક ધોરણે દરિયાની સપાટીમાં વધારો (global rise in average sea levels) જેવા બદલાવો પેદા થવાનું અનુમાન કરવામાં આવ્યું છે. [૧૪૧]

માનવીય ભૂગોળ[ફેરફાર કરો]

નકશા બનાવવાની કળા- માનચિત્રકલા (કાર્ટોગ્રાફિ) (Cartography) અને ભૂગોળ (geography), આ બંને વિદ્યાશાખાઓ પૃથ્વીનું વિવરણ આપવા પ્રત્યે સમર્પિત છે. માનચિત્રકલા અને ભૂગોળની સાથેસાથે આવશ્યક માહિતીને યોગ્ય રીતે અને પ્રમાણમાં રજૂ કરતી, સ્થળો અને અંતર નિશ્ચિત કરતી મોજણી (Surveying)ની વિદ્યા અને સ્થિતિ અને દિશા નિશ્ચિત કરતી નેવિગેશન (navigation) વિદ્યા પણ વિકસ્યાં.

ઢાંચો:Continents navmap

નવેમ્બર 2008 મુજબ પૃથ્વી પર આશરે 6,740,000,000 માનવો વસે છે. [૧૪૨] અનુમાનો સૂચવે છે કે વિશ્વની માનવવસતિ (world's human population) 2013માં 7 અબજ સુધી અને 2050માં 9.2 અબજ[૧૪૩] સુધી પહોંચશે. મોટા ભાગની માનવવસતિનો વધારો વિકાસશીલ દેશો (developing nations)માં થશે. આખા વિશ્વમાં માનવવસતિની ગીચતા (population density) સ્થળે સ્થળે જુદી છે, પરંતુ માનવવસતિનો મોટો ભાગ એશિયા (Asia)માં વસે છે. 2020 સુધીમાં, વિશ્વની માનવવસતિના 60% જેટલા લોકો ગ્રામ્ય (rural)ને બદલે શહેરી વિસ્તારો (urban)માં વસતા હશે તેવું અનુમાન છે. [૧૪૪]


પૃથ્વીની સપાટીનો માત્ર આઠમો ભાગ જ માનવ માટે રહેવાલાયક છે એવો અંદાજ છે; તેના ત્રણ-ભાગ પર મહાસાગરો છે, જમીન-વિસ્તારનો પણ અડધો ભાગ કાં તો રણ (14%),[૧૪૫] ઊંચા પર્વતો (27%) છે[૧૪૬] અથવા વસવા માટે ઓછો અનુકૂળ એવો પ્રદેશ છે. એલર્ટ (Alert) એ નુનાવુત (Nunavut), કેનેડામાં ઍલિસમેર દ્વિપ (Ellesmere Island) પર ઉત્તર ગોળાર્ધમાં સૌથી વધુ ઉત્તરે સ્થાયી થયેલ વિશ્વની માનવ વસાહત છે. [૧૪૭] (82°28′N) દક્ષિણ ગોળાર્ધમાં સૌથી વધુ દક્ષિણે, લગભગ દક્ષિણ ધ્રુવ પર જ અમુન્દસેન-સ્કોટ દક્ષિણ ધ્રુવ સ્ટેશન (Amundsen-Scott South Pole Station) છે. (90°S)

રાત્રિસમયે પૃથ્વી, વિશ્વની રાત્રિ-સમયની ડીએમએસપી (DMSP) (DMSP)/ઓએલએસ (OLS) જમીન પ્રકાશિત માહિતીના આધારે તૈયાર કરેલું ચિત્ર. આ ચિત્ર ફોટો લઈ શકાય તેવું (photographic) નહોતું તથા નરી આંખે જોતા નીરિક્ષકને દેખાય તે કરતાં તેમાં અનેક બાબતો વધુ તેજસ્વી બતાવવામાં આવી છે.

સ્વતંત્ર સાર્વભૌમ રાષ્ટ્રો (nation), એન્ટાર્કટિકાના કેટલાક અપવાદરૂપ હિસ્સાઓને છોડીને પૃથ્વીની તમામ જમીન સપાટી પર પોતાનો દાવો કરે છે. 2007 પ્રમાણે, કુલ મળીને 201 સાર્વભૌમ રાષ્ટ્રો (201 sovereign states) છે, જેમાંથી 192 યુનાઈટેડ નેશન્સના સભ્ય દેશ (United Nations member states) છે. આ ઉપરાંત, 59 પરાધીન પ્રાન્તો (dependent territories) અને અનેક સ્વાયત્ત પ્રદેશો (autonomous areas), વિવાદાગ્રસ્ત પ્રદેશો (territories under dispute) અને બીજા પ્રદેશો તો ખરા જ. [૧૪] ઐતિહાસિક રીતે જોઈએ તો આખી પૃથ્વી પર કયારેય કોઈ એક સાર્વભૌમ (sovereign) સરકાર (government)નું શાસન નહોતું, અલબત્ત, કેટલાંય રાષ્ટ્રો-રાજયોએ વિશ્વ પર વર્ચસ (world domination) જમાવવા માટે ખૂબ મથામણ કરી હતી અને નિષ્ફળ ગયાં હતાં. [૧૪૮]


રાષ્ટ્રો વચ્ચેના ઝઘડાઓમાં હસ્તક્ષેપ કરવાના અને તેથી કરીને સશસ્ત્ર અથડામણો, યુદ્ધો નિવારવાના હેતુથી વિશ્વવ્યાપક આંતરસરકારી સંસ્થા (intergovernmental organization)- યુનાઈટેડ નેશન્સ (United Nations)ની સ્થાપના કરવામાં આવી છે.[૧૪૯] જો કે તે વિશ્વ સરકાર નથી. યુનાઈટેડ નેશન્સ આંતરરાષ્ટ્રીય કાયદાઓ (international law) માટેની જોગવાઈ પૂરી પાડે છે તથા જયારે તમામ સભ્યોની સર્વસંમતિ હોય ત્યારે લશ્કરી હસ્તક્ષેપ કરી શકે છે,[૧૫૦] પણ મુખ્યત્વે તે એક આંતરરાષ્ટ્રીય મુત્સદ્દીગીરી માટેનું પ્લેટફોર્મ છે.


2004ના આંકડાઓ મુજબ, કુલ મળીને લગભગ 400 લોકો પૃથ્વીના વાયુમંડળની બહાર ગયા છે અને તેમાંથી બાર (twelve) જણાએ ચંદ્ર પર ઉતરાણ કર્યં હતું. [૧૫૧][૧૫૨][૧૫૩] અવકાશમાં જો કોઈ માનવ હાજરી હોય તો તે આંતરરાષ્ટ્રીય અવકાશ મથક (ઈન્ટરનેશનલ સ્પેસ સ્ટેશન) (International Space Station) પર છે. દર છ મહિને આ મથક પરના ત્રણ માણસોના જૂથને બદલવામાં આવે છે. [૧૫૪]


સાંસ્કૃતિક દષ્ટિકોણ[ફેરફાર કરો]

અપોલો 8 (Apollo 8) પરથી ખગોળશાસ્ત્રીઓ દ્વારા લેવાયેલો પૃથ્વીનો સૌથી પહેલો ફોટોગ્રાફ- "અર્થરાઈઝ"

"અર્થ (પૃથ્વી)" શબ્દ, એંગ્લો-સેકઝોન (Anglo-Saxon) શબ્દ ઈરદા, એટલે કે જમીન અથવા માટી પરથી બન્યો છે. જૂનવાણી અંગ્રેજી (Old English)માં તે ઈઓર્થેમાં અપભ્રંશ પામ્યો અને પછી મધ્યકાળની અંગ્રેજી (Middle English)માં તે ઈર્થે બન્યો. [૧૫૫] ક્રોસ (ચોકડી)ને આંતરતું વર્તુળ એ પૃથ્વી માટેનું ખગોળશાસ્ત્રનું નિયત ચિહ્ન/પ્રતીક છે. [૧૫૬]


પૃથ્વીનું મોટા ભાગે દૈવીતત્ત્વ (deity) તરીકે, વિશેષ રૂપે દેવી (goddess) તરીકે વ્યકિતકરણ કરવામાં આવે છે. અનેક સંસ્કૃતિઓમાં પૃથ્વીને માતૃદેવી (mother goddess) અને ધરતીમાતા તરીકે સંબોધવામાં આવે છે તથા તેને પ્રજનનનાં દેવી (fertility deity) તરીકે પણ નિરૂપવામાં આવે છે. અનેક ધર્મોમાં પૃથ્વીનું સર્જન અલૌકિક દેવી અથવા દેવાતાઓએ કયુર્ં તેવી સર્જન દંતકથાઓ (Creation myth) છે. વિરોધવાદ (પ્રોટેસ્ટંટીઝમ) (Protestantism)[૧૫૭]ની મોટા ભાગે મૂળતત્ત્વવાદ (fundamentalist) સાથે સંકળાયેલી શાખાઓ અથવા ઈસ્લામ (Islam) જેવા વિવિધ ધાર્મિક જૂથો [૧૫૮]એવું માને છે કે તેમના ધાર્મિક ગ્રંથો (sacred texts)માં આલેખાયેલી પૃથ્વીના સર્જનની દંતકથાઓનું તેમણે કરેલું અર્થઘટન (interpretations) શબ્દશઃ સત્ય (literal truth) છે અને આ અર્થઘટનોને પૃથ્વીની રચના અને તેના ઉત્પત્તિનાં મૂળ અને તેની પર જીવનના વિકાસ અંગેના પરંપરાગત વૈજ્ઞાનિક વૃત્તાન્તોની સાથોસાથ અથવા તો તેમની જગ્યાએ મૂકવાનો તેઓ આગ્રહ રાખે છે.[૧૫૯]વિજ્ઞાની સમુદાય (scientific community)[૧૬૦][૧૬૧] અને અન્ય ધાર્મિક જૂથોએ આ પ્રકારના દાવાઓનો સ્પષ્ટ વિરોધ કર્યો છે.[૧૬૨][૧૬૩][૧૬૪] રચના-ઉત્ક્રાંતિનો વિવાદ (creation-evolution controversy) આ અંગેનું દેખીતું ઉદાહરણ છે.


ભૂતકાળમાં પૃથ્વી સપાટ (flat Earth) હોવાની બાબતે ભિન્ન પ્રકારના મતો અને માન્યતાઓ પ્રચલિત હતી,[૧૬૫] પરંતુ પછી નીરિક્ષણ અને પૃથ્વી ફરતે વહાણમાં પ્રદક્ષિણાના આધારે પૃથ્વી ગોળ જેવા આકાર (spherical Earth)ની છે એ વિભાવનાએ માન્યતા મેળવી.[૧૬૬] અંતરિક્ષયાનની ઉડાન પછી પૃથ્વી અંગેનો માણસનો દષ્ટિકોણ બદલાયો છે અને હવે જીવમંડળને વૈશ્વિક સંકલિત દષ્ટિકોણથી જોવામાં આવે છે. [૧૬૭][૧૬૮]

મનુષ્યજાતિની પૃથ્વી પર અસરો અંગે ચિતિંત વધતી જતી પર્યાવરણ-સંરક્ષણ ઝુંબેશ (environmental movement)માં પણ આ બાબત પ્રતિબિંબિત થાય છે. [૧૬૯]


આ પણ જોશો[ફેરફાર કરો]

Script error: No such module "Portal". Script error: No such module "Portal".

નોંધો[ફેરફાર કરો]

  1. સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; epochનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  2. ૨.૦ ૨.૧ સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; apsisનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  3. સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; asc_nodeનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  4. સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; arg_periનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  5. સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; surfacecoverનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  6. આંતરરાષ્ટ્રીય ખગોળશાસ્ત્રીય યુનિયન (International Astronomical Union)ના સંમેલન દ્વારા પૃથ્વી સિવાય સૂર્યની આસપાસ ફરતા વિસ્તૃત જમીન પદાર્થો માટે "ટેરા" શબ્દ વાપરવાનું ઠેરવવામાં આવ્યું છે, જેની નોંધ લેવી. સીએફ. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  7. સૌરમંડળના બીજા ગ્રહો, કાં તો ખૂબ ગરમ અને કાં તો ખૂબ ઠંડા હોવાથી તેમના પર પ્રવાહી જળ ટકી શકતું નથી. જો કે, મંગળની સપાટી પર ભૂતકાળમાં પાણી અસ્તિત્વ ધરાવતું હોવાના પુરાવા મળ્યા છે, અને કદાચ આજે પણ ત્યાં પાણીનું અસ્તિત્વ હોઈ શકે. જુઓઃ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  8. 2007ની માહિતી મુજબ, સૌરમંડળ સિવાયના એક માત્ર ગ્રહના વાતાવરણમાં પાણીની વરાળ મળી આવી હતી, તે વાયુનો ગોળો હતો. જુઓઃ Tinetti, G. et al (July 2007). "Water vapour in the atmosphere of a transiting extrasolar planet". Nature 448: 169–171. doi:10.1038/nature06002 . http://www.nature.com/nature/journal/v448/n7150/abs/nature06002.html. 
  9. તારા દિવસો (sidereal day)ની સંખ્યા કરતાં સૌર દિવસોની સંખ્યા એક ઓછી હોય છે, કારણ કે સૂર્યની આસપાસ પૃથ્વીની પ્રદક્ષિણા એક વધુ પરિભ્રમણને જન્મ આપે છે- પૃથ્વીનું તેની પોતાની ધરી પર પરિભ્રમણ.
  10. આ લેખ ની કેટલીક માહિતી પબ્લિક ડોમેઇન જ્ઞાનકોશ 1911 Encyclopædia Britannica માંથી લેવાયેલી છે.
  11. સ્થાનિક ધોરણે 5 અને 200 કિ.મી. વચ્ચે બદલાતી રહે છે.
  12. સ્થાનિક ધોરણે ૫થી 70 કિ.મી. વચ્ચે બદલાય છે.
  13. અત્યારે આફ્રિકન પ્લેટમાંથી બનવાની પ્રક્રિયામાં હોય તેવી સોમાલી પ્લેટ (Somali Plate)નો પણ સમાવેશ કરવામાં આવ્યો છે. જુઓઃ Chorowicz, Jean (October 2005). "The East African rift system". Journal of African Earth Sciences 43 (1–3): 379–410. doi:10.1016/j.jafrearsci.2005.07.019 . 
  14. આ માર્ચ 1995માં કઈકો (Kaikō) પાત્ર દ્વારા લેવામાં આવેલું માપ છે, જે અત્યાર સુધી લેવાયેલા માપમાં તેને સૌથી વધુ ચોકસાઈભરેલું માનવામાં આવે છે. વધુ વિગતો માટે ચેલેન્જર ડીપ (Challenger Deep) લેખ જોશો.
  15. પૃથ્વી પરના મહાસાગરોનું કુલ કદ 1.4×૧૦9 કિ.મી.3 છે.પૃથ્વીની સપાટીનું કુલ ક્ષેત્રફળ 5.1×૧૦8 કિ.મી.² છે.એટલે, સૌથી પહેલી ધારણા મુજબ, સરેરાશ ઊંડાઈ આ બંનેના ગુણોત્તર જેટલી અથવા તો 2.7 કિ.મી. હોઈ શકે.
  16. આ આંકડાઓનો અંતિમ સ્રોત- ઓકી, "સૌર સમયની સરેરાશ સેકન્ડો"ને બદલે "યુટી1ની સેકન્ડો" શબ્દ વાપરે છે.—Aoki, S.; Kinoshita, H.; Guinot, B.; Kaplan, G. H.; McCarthy, D. D.; Seidelmann, P. K. (1982). "The new definition of universal time". Astronomy and Astrophysics 105 (2): 359–361. http://adsabs.harvard.edu/abs/1982A&A...105..359A. Retrieved 2008-09-23. 
  17. પૃથ્વી માટે હિલ રેડિયસ એટલે
    '"`UNIQ--postMath-00000001-QINU`"',
    જયાં m એટલે પૃથ્વીનું દળ, a એટલે ખગોળશાસ્ત્રીય એકમ અને M એટલે સૂર્યનું દળ થાય છે. આમ એ.યુ.(A.U.)ની ત્રિજયા થાય છેઃ '"`UNIQ--postMath-00000002-QINU`"'.

સંદર્ભો[ફેરફાર કરો]

  1. ૧.૦ ૧.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. See table 8.10.2. Calculation based upon 1 AU = 149,597,870,700(3) m.
  2. ૨.૦ ૨.૧ ૨.૨ ૨.૩ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "IERS" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "IERS" defined multiple times with different content
  3. ૩.૦૦ ૩.૦૧ ૩.૦૨ ૩.૦૩ ૩.૦૪ ૩.૦૫ ૩.૦૬ ૩.૦૭ ૩.૦૮ ૩.૦૯ ૩.૧૦ ૩.૧૧ ૩.૧૨ ૩.૧૩ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "earth_fact_sheet" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "earth_fact_sheet" defined multiple times with different content
  4. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  5. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  6. Various (2000). David R. Lide, ed. Handbook of Chemistry and Physics (81st ed.). CRC. ISBN 0-8493-0481-4.  Check date values in: 2000 (help)
  7. સંદર્ભ ત્રુટિ: અમાન્ય <ref> ટેગ; usnoનામના સંદર્ભ માટે કોઈ પણ લેખન અપાયું નથી
  8. ૮.૦ ૮.૧ World Geodetic System (WGS-84). Available online from National Geospatial-Intelligence Agency.
  9. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  10. IERS Working Groups (2003). "General Definitions and Numerical Standards". In McCarthy, Dennis D.; Petit, Gérard. IERS Technical Note No. 32. U.S. Naval Observatory and Bureau International des Poids et Mesures. http://www.iers.org/MainDisp.csl?pid=46-25776. Retrieved 2008-08-03. 
  11. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  12. The Earth's circumference is (almost) exactly 40,000 km because the metre was calibrated based precisely on this measurement – more specifically, 1/10-millionth of the distance between the poles and the equator.
  13. Pidwirny, Michael (2006-02-02). Surface area of our planet covered by oceans and continents.(Table 8o-1). University of British Columbia, Okanagan. http://www.physicalgeography.net/fundamentals/8o.html. Retrieved 2007-11-26. 
  14. ૧૪.૦ ૧૪.૧ ૧૪.૨ ૧૪.૩ ૧૪.૪ ૧૪.૫ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "cia" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "cia" defined multiple times with different content
  15. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  16. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  17. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  18. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  19. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  20. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  21. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  22. May, Robert M. (1988). "How many species are there on earth?". Science 241 (4872): 1441–1449. doi:10.1126/science.241.4872.1441 . PMID 17790039 . http://adsabs.harvard.edu/abs/1988Sci...241.1441M. Retrieved 2007-08-14. 
  23. ૨૩.૦ ૨૩.૧ Dalrymple, G.B. (1991). The Age of the Earth. California: Stanford University Press. ISBN 0-8047-1569-6.  Check date values in: 1991 (help) સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "age_earth1" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "age_earth1" defined multiple times with different content
  24. ૨૪.૦ ૨૪.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  25. ૨૫.૦ ૨૫.૧ Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Geological Society, London, Special Publications 190: 205–221. doi:10.1144/GSL.SP.2001.190.01.14 . http://sp.lyellcollection.org/cgi/content/abstract/190/1/205. Retrieved 2007-09-20. 
  26. ૨૬.૦ ૨૬.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  27. Harrison, Roy M.; Hester, Ronald E. (2002). Causes and Environmental Implications of Increased UV-B Radiation. Royal Society of Chemistry. ISBN 0854042652.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 2002 (help)
  28. ૨૮.૦ ૨૮.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "carrington" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "carrington" defined multiple times with different content
  29. યોડર, ચાર્લ્સ એફ. ( 1995:8).
  30. Bowring, S. (1995). "The Earth's early evolution". Science 269: 1535. doi:10.1126/science.7667634 . PMID 7667634 . 
  31. Yin, Qingzhu; Jacobsen, S. B.; Yamashita, K.; Blichert-Toft, J.; Télouk, P.; Albarède, F. (2002). "A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites". Nature 418 (6901): 949–952. doi:10.1038/nature00995 . 
  32. Canup, R. M.; Asphaug, E. (Fall Meeting 2001). "An impact origin of the Earth-Moon system". Abstract #U51A-02. American Geophysical Union. http://adsabs.harvard.edu/abs/2001AGUFM.U51A..02C. Retrieved 2007-03-10. 
  33. R. Canup and E. Asphaug (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412: 708–712. doi:10.1038/35089010 . http://www.nature.com/nature/journal/v412/n6848/abs/412708a0.html. 
  34. Morbidelli, A.; Chambers, J.; Lunine, J. I.; Petit, J. M.; Robert, F.; Valsecchi, G. B.; Cyr, K. E. (2000). "Source regions and time scales for the delivery of water to Earth". Meteoritics & Planetary Science 35 (6): 1309–1320. http://adsabs.harvard.edu/abs/2000M&PS...35.1309M. Retrieved 2007-03-06.  સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "watersource" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "watersource" defined multiple times with different content
  35. Rogers, John James William; Santosh, M. (2004). Continents and Supercontinents. Oxford University Press US. p. 48. ISBN 0195165896.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 2004 (help)
  36. Hurley, P.M.; Rand, J.R. (1969). "Pre-drift continental nuclei". Science 164: 1229–1242. doi:10.1126/science.164.3885.1229 . PMID 17772560 . 
  37. Armstrong, R.L. (1968). "A model for the evolution of strontium and lead isotopes in a dynamic earth". Rev. Geophys. 6: 175–199. doi:10.1029/RG006i002p00175 . 
  38. De Smet, J (2000). "Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle". Tectonophysics 322: 19. doi:10.1016/S0040-1951(00)00055-X . 
  39. Harrison, Tm; Blichert-Toft, J; Müller, W; Albarede, F; Holden, P; Mojzsis, Sj (Dec 2005). "Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 ga.". Science (New York, N.Y.) 310 (5756): 1947–50. doi:10.1126/science.1117926 . PMID 16293721 . 
  40. Hong, D (2004). "Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt". Journal of Asian Earth Sciences 23: 799. doi:10.1016/S1367-9120(03)00134-2 . 
  41. Armstrong, R.L. (1991). "The persistent myth of crustal growth". Australian Journal of Earth Sciences 38: 613–630. doi:10.1080/08120099108727995 . 
  42. Murphy, J. B.; Nance, R. D. (1965). "How do supercontinents assemble?". American Scientist 92: 324–33. doi:10.1511/2004.4.324 . http://scienceweek.com/2004/sa040730-5.htm. Retrieved 2007-03-05. 
  43. Purves, William Kirkwood; Sadava, David; Orians, Gordon H.; Heller, Craig (2001). Life, the Science of Biology: The Science of Biology. Macmillan. p. 455. ISBN 0716738732.  Check date values in: 2001 (help)
  44. Doolittle, W. Ford (February 2000). "Uprooting the tree of life". Scientific American 282 (6): 90–95. doi:10.1038/nature03582 . 
  45. Berkner, L. V.; Marshall, L. C. (1965). "On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere". Journal of Atmospheric Sciences 22 (3): 225–261. doi:10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2 . http://adsabs.harvard.edu/abs/1965JAtS...22..225B. Retrieved 2007-03-05. 
  46. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  47. Kirschvink, J. L. (1992). Schopf, J.W.; Klein, C. & Des Maris, D., eds. Late Proterozoic low-latitude global glaciation: the Snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press. pp. 51–52. ISBN 0521366151.  Check date values in: 1992 (help)
  48. Raup, D. M.; Sepkoski, J. J. (1982). "Mass Extinctions in the Marine Fossil Record". Science 215 (4539): 1501–1503. doi:10.1126/science.215.4539.1501 . PMID 17788674 . http://adsabs.harvard.edu/abs/1982Sci...215.1501R. Retrieved 2007-03-05. 
  49. Gould, Stephan J. (October 1994). "The Evolution of Life on Earth". Scientific American. http://brembs.net/gould.html. Retrieved 2007-03-05. 
  50. Wilkinson, B. H.; McElroy, B. J. (2007). "The impact of humans on continental erosion and sedimentation". Bulletin of the Geological Society of America 119 (1–2): 140–156. doi:10.1130/B25899.1 . http://bulletin.geoscienceworld.org/cgi/content/abstract/119/1-2/140. Retrieved 2007-04-22. 
  51. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  52. ૫૨.૦ ૫૨.૧ ૫૨.૨ Sackmann, I.-J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future" (PDF). Astrophysical Journal 418: 457–468. Bibcode 1993ApJ...418..457S . doi:10.1086/173407 . http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1993ApJ...418..457S&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Retrieved 2008-07-08.  સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sun_future" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sun_future" defined multiple times with different content
  53. Kasting, J.F. (1988). "Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus". Icarus 74: 472–494. doi:10.1016/0019-1035(88)90116-9 . http://adsabs.harvard.edu/abs/1988Icar...74..472K. Retrieved 2007-03-31. 
  54. ૫૪.૦ ૫૪.૧ વાર્ડ અને બ્રાઉનલી (2002)
  55. Britt, Robert (2000-02-25). "Freeze, Fry or Dry: How Long Has the Earth Got?". Archived from the original on 2000-07-06.  Check date values in: 2000-02-25 (help)
  56. ૫૬.૦ ૫૬.૧ Schröder, K.-P.; Smith, Robert Connon (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386: 155. doi:10.1111/j.1365-2966.2008.13022.x . ઢાંચો:Arxiv. 
    આ પણ જોશોLua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sun_future_schroder" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sun_future_schroder" defined multiple times with different content
  57. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  58. Tackley, Paul J. (2000-06-16). "Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory". Science 288 (5473): 2002–2007. doi:10.1126/science.288.5473.2002 . PMID 10856206 . 
  59. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  60. ૬૦.૦ ૬૦.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "ngdc2006" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "ngdc2006" defined multiple times with different content
  61. Lua error in વિભાગ:Citation/CS1 at line 4077: bad argument #1 to 'pairs' (table expected, got nil).
  62. Lua error in વિભાગ:Citation/CS1 at line 4077: bad argument #1 to 'pairs' (table expected, got nil).
  63. Senne, Joseph H. (2000). "Did Edmund Hillary Climb the Wrong Mountain". Professional Surveyor 20 (5): 16–21. 
  64. Sharp, David (2005-03-05). "Chimborazo and the old kilogram". The Lancet 365 (9462): 831–832. doi:10.1016/S0140-6736(05)71021-7 . 
  65. Morgan, J. W.; Anders, E. (1980). "Chemical composition of Earth, Venus, and Mercury". Proceedings of the National Academy of Science 71 (12): 6973–6977. doi:10.1073/pnas.77.12.6973 . PMID 16592930 . http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=350422. Retrieved 2007-02-04. 
  66. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  67. Kerr, Richard A. (2005-09-26). "Earth's Inner Core Is Running a Tad Faster Than the Rest of the Planet". Science 309 (5739): 1313. doi:10.1126/science.309.5739.1313a . PMID 16123276 . 
  68. Jordan, T. H. (1979). "Structural Geology of the Earth's Interior". Proceedings National Academy of Science 76 (9): 4192–4200. doi:10.1073/pnas.76.9.4192 . PMID 16592703 . http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=411539. Retrieved 2007-03-24. 
  69. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  70. ૭૦.૦ ૭૦.૧ Turcotte, D. L.; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. pp. 136–137. ISBN 978-0-521-66624-4.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 2002 (help) સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "turcotte" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "turcotte" defined multiple times with different content
  71. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  72. Alfè, D.; Gillan, M. J.; Vocadlo, L.; Brodholt, J; Price, G. D. (2002). "The ab initio simulation of the Earth's core" (PDF). Philosophical Transaction of the Royal Society of London 360 (1795): 1227–1244. http://chianti.geol.ucl.ac.uk/~dario/pubblicazioni/PTRSA2002.pdf. Retrieved 2007-02-28. 
  73. Vlaar, N (1994). "Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle". Earth and Planetary Science Letters 121: 1. doi:10.1016/0012-821X(94)90028-0 . 
  74. Turcotte, D. L.; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. p. 137. ISBN 978-0-521-66624-4.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 2002 (help) સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "T.26S_137" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "T.26S_137" defined multiple times with different content
  75. ૭૫.૦ ૭૫.૧ Sclater, John G (1981). "Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss". Journal of Geophysical Research 86: 11535. doi:10.1029/JB086iB12p11535 .  સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "heat_loss" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "heat_loss" defined multiple times with different content
  76. Richards, M. A.; Duncan, R. A.; Courtillot, V. E. (1989). "Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails". Science 246 (4926): 103–107. doi:10.1126/science.246.4926.103 . PMID 17837768 . http://adsabs.harvard.edu/abs/1989Sci...246..103R. Retrieved 2007-04-21. 
  77. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  78. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  79. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  80. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  81. Bowring, Samuel A. (1999). "Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology 134: 3. doi:10.1007/s004100050465 . 
  82. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  83. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  84. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  85. ૮૫.૦ ૮૫.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "Pidwirny2006" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "Pidwirny2006" defined multiple times with different content
  86. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  87. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  88. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  89. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  90. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  91. FAO Staff (1995). FAO Production Yearbook 1994 (Volume 48 ed.). Rome, Italy: Food and Agriculture Organization of the United Nations. ISBN 9250038445.  Check date values in: 1995 (help)
  92. ૯૨.૦ ૯૨.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sverdrup" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "sverdrup" defined multiple times with different content
  93. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  94. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  95. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  96. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  97. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  98. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  99. Lua error in વિભાગ:Citation/CS1 at line 4077: bad argument #1 to 'pairs' (table expected, got nil).
  100. ૧૦૦.૦ ૧૦૦.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "atmosphere" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "atmosphere" defined multiple times with different content
  101. ૧૦૧.૦ ૧૦૧.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "moran2005" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "moran2005" defined multiple times with different content
  102. ૧૦૨.૦ ૧૦૨.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "berger2002" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "berger2002" defined multiple times with different content
  103. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  104. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  105. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  106. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  107. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  108. Liu, S. C.; Donahue, T. M. (1974). "The Aeronomy of Hydrogen in the Atmosphere of the Earth". Journal of Atmospheric Sciences 31 (4): 1118–1136. doi:10.1175/1520-0469(1974)031<1118:TAOHIT>2.0.CO;2 . http://adsabs.harvard.edu/abs/1974JAtS...31.1118L. Retrieved 2007-03-02. 
  109. David C. Catling, Kevin J. Zahnle, Christopher P. McKay (2001). "Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth". Science 293 (5531): 839–843. doi:10.1126/science.1061976 . PMID 11486082 . http://www.sciencemag.org/cgi/content/full/293/5531/839. 
  110. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  111. Hunten, D. M.; Donahue, T. M. (1976). "Hydrogen loss from the terrestrial planets". Annual review of earth and planetary sciences 4: 265–292. doi:10.1146/annurev.ea.04.050176.001405 . http://adsabs.harvard.edu/abs/1976AREPS...4..265H. Retrieved 2008-11-07. 
  112. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  113. Campbell, Wallace Hall (2003). Introduction to Geomagnetic Fields. New York: Cambridge University Press. p. 57. ISBN 0521822068.  Check date values in: 2003 (help) સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "campbelwh" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "campbelwh" defined multiple times with different content
  114. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  115. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  116. Seidelmann, P. Kenneth (1992). Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books. p. 48. ISBN 0-935702-68-7.  Check date values in: 1992 (help)
  117. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.—છેડા પરનો આલેખ.
  118. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  119. Zeilik, M.; Gregory, S. A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 56. ISBN 0030062284.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 1998 (help)
  120. ૧૨૦.૦ ૧૨૦.૧ Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.—સૂર્ય અને ચંદ્ર પરના દેખીતા વ્યાસનાં પાનાં જુઓ. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "angular" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "angular" defined multiple times with different content
  121. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil. સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "moon_fact_sheet" defined multiple times with different content સંદર્ભ ત્રુટિ: Invalid <ref> tag; name "moon_fact_sheet" defined multiple times with different content
  122. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  123. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  124. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  125. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  126. અર્કનીચથી 103.4% અંતરે ઉચ્ચબિંદુ આવેલું છે. પરાવર્તનના નિયમ મુજબ, અર્કનીચ પર થતા કિરણોત્સર્ગ એ ઉચ્ચબિંદુ પર લગભગ 106.9% ઊર્જામાં પરિણમે છે.
  127. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  128. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  129. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  130. Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. (2004). "A long-term numerical solution for the insolation quantities of the Earth". Astronomy and Astrophysics 428: 261–285. doi:10.1051/0004-6361:20041335 . http://adsabs.harvard.edu/abs/2004A&A...428..261L. Retrieved 2007-03-31. 
  131. Murray, N.; Holman, M. (2001). "The role of chaotic resonances in the solar system". Nature 410 (6830): 773–779. doi:10.1038/35071000 . http://arxiv.org/abs/astro-ph/0111602v1. Retrieved 2008-08-05. 
  132. Williams, D.M.; J.F. Kasting (1996). "Habitable planets with high obliquities". Lunar and Planetary Science 27: 1437–1438. http://adsabs.harvard.edu/abs/1996LPI....27.1437W. Retrieved 2007-03-31. 
  133. R. Canup and E. Asphaug (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412: 708–712. doi:10.1038/35089010 . 
  134. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  135. Lua error in વિભાગ:Citation/CS1 at line 4077: bad argument #1 to 'pairs' (table expected, got nil).
  136. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  137. Ward, P. D.; Brownlee, D. (2000-01-14). Rare Earth: Why Complex Life is Uncommon in the Universe (1st ed.). New York: Springer-Verlag. ISBN 0387987010.  Check date values in: 2000-01-14 (help)
  138. Hillebrand, Helmut (2004). "On the Generality of the Latitudinal Gradient". American Naturalist 163 (2): 192–211. doi:10.1086/381004 . 
  139. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  140. Rona, Peter A. (2003). "Resources of the Sea Floor". Science 299 (5607): 673–674. doi:10.1126/science.1080679 . PMID 12560541 . http://www.sciencemag.org/cgi/content/full/299/5607/673?ijkey=AHVbRrqUsmdHY&keytype=ref&siteid=sci. Retrieved 2007-02-04. 
  141. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  142. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  143. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  144. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  145. Peel, M. C.; Finlayson, B. L.; McMahon, T. A. (2007). "Updated world map of the Köppen-Geiger climate classification". Hydrology and Earth System Sciences Discussions 4: 439–473. http://www.hydrol-earth-syst-sci-discuss.net/4/439/2007/hessd-4-439-2007.html. Retrieved 2007-03-31. 
  146. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  147. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  148. Kennedy, Paul (1989). The Rise and Fall of the Great Powers (1st ed.). Vintage. ISBN 0679720197.  Check date values in: 1989 (help)
  149. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  150. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  151. Ellis, Lee (2004). Who's who of NASA Astronauts. Americana Group Publishing. ISBN 0966796144.  Check date values in: 2004 (help)
  152. Shayler, David; Vis, Bert (2005). Russia's Cosmonauts: Inside the Yuri Gagarin Training Center. Birkhäuser. ISBN 0387218947.  Check date values in: 2005 (help)
  153. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  154. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  155. Lua error in વિભાગ:Citation/CS1 at line 4077: bad argument #1 to 'pairs' (table expected, got nil).
  156. Liungman, Carl G. (2004). "Group 29: Multi-axes symmetric, both soft and straight-lined, closed signs with crossing lines". Symbols -- Encyclopedia of Western Signs and Ideograms. New York: Ionfox AB. pp. 281–282. ISBN 91-972705-0-4.  Check date values in: 2004 (help)
  157. Dutch, S.I. (2002). "Religion as belief versus religion as fact" (PDF). Journal of Geoscience Education 50 (2): 137–144. http://nagt.org/files/nagt/jge/abstracts/Dutch_v50n2p137.pdf. Retrieved 2008-04-28. 
  158. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  159. Ross, M.R. (2005). "Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism" (PDF). Journal of Geoscience Education 53 (3): 319. http://www.nagt.org/files/nagt/jge/abstracts/Ross_v53n3p319.pdf. Retrieved 2008-04-28. 
  160. Pennock, R. T. (2003). "Creationism and intelligent design". Annu Rev Genomics Hum Genet 4: 143–63. doi:10.1146/annurev.genom.4.070802.110400 . PMID 14527300 . 
  161. સાયન્સ, ઈવોલ્યુશન એન્ડ ક્રિએશનીઝમ, નેશનલ એકેડમી પ્રેસ, વોશિંગ્ટન ડીસી, 2005.
  162. Colburn, A.; Henriques, L. (2006). "Clergy views on evolution, creationism, science, and religion". Journal of Research in Science Teaching 43 (4): 419–442. doi:10.1002/tea.20109 . 
  163. Frye, Roland Mushat (1983). Is God a Creationist? The Religious Case Against Creation-Science. Scribner's. ISBN 0-68417-993-8.  Check date values in: 1983 (help)
  164. Gould, S. J. (1997). "Nonoverlapping magisteria" (PDF). Natural History 106 (2): 16–22. http://www.jbburnett.com/resources/gould_nonoverlapping.pdf. Retrieved 2008-04-28. 
  165. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.; પરંતુ કોસમાસ ઈન્ડીકોપ્લેયુસેટ્સ (Cosmas Indicopleustes) પણ જોશો.
  166. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  167. Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  168. Lovelock, James E. (1979). Gaia: A New Look at Life on Earth (First ed.). Oxford: Oxford University Press. ISBN 0-19-286030-5.  Check date values in: 1979 (help)
  169. ઉદાહરણ તરીકેઃ McMichael, Anthony J. (1993). Planetary Overload: Global Environmental Change and the Health of the Human Species. Cambridge University Press. ISBN 0521457599.  Check date values in: 1993 (help)

સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science_241_4872_1441" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત Harrison_2002" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત yoder1995" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત bowring_housch1995" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science310_5754_1671" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત reilly20091022" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત canup_asphaug2001a" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત canup_asphaug2001b" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત asp2002" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત physorg20100304" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત williams_santosh2004" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science164_1229" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત rg6_175" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત tp322_19" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science310_5756_1947" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત jaes23_799" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત ajes38_613" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત as92_324" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત sa282_6_90" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત jas22_3_225" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત burton20021129" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત kirschvink1992" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત sci215_4539_1501" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત gould1994" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત bgsa119_1_140" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત psc" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત icarus74_472" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત ward_brownlee2002" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત britt2000" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત pnas1_24_9576" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત hess5_4_569" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત stern20011125" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science288_5473_2002" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત milbert_smith96" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત nist_length2000" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત wpba2001" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત ps20_5_16" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત lancet365_9462_831" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત tall_tales" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત brown_mussett1981" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત pnas71_12_6973" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત tanimoto_ahrens1995" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science309_5739_1313" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત pnas76_9_4192" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત robertson2001" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત sanders20031210" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત ptrsl360_1795_1227" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત epsl121_1" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત science246_4926_103" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત brown_wohletz2005" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત kious_tilling1999" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત seligman2008" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત duennebier1999" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત noaa20070307" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત cmp134_3" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત podp2000" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત gps_time_series" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત kring" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત layers_earth" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત jessey" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.
સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત de_pater_lissauer2010" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.

સંદર્ભ ત્રુટિ: <references> માં વ્યાખ્યાયિત nature410_6830_773" નામ સાથેનું <ref> ટેગ આગળના લેખનમાં વપરાયો નથી.

ગ્રંથસૂચિ[ફેરફાર કરો]

  • Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  • Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  • Ward, Peter D.; Donald Brownlee (2002). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World. Times Books, Henry Holt and Company. ISBN 0-8050-6781-7.  Cite uses deprecated parameter |coauthors= (help); Check date values in: 2002 (help)
  • Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.
  • Lua error in વિભાગ:Citation/CS1/Date_validation at line 33: attempt to compare number with nil.

અન્ય લિન્ક[ફેરફાર કરો]

Earth વિષય પર સહયોગી વિકિપીડિયાઓમાં વધુ જાણવા માટે (આ બધી માહિતી અંગ્રેજી ભાષામાં મળશે):
Wiktionary-logo-v2.svg શબ્દકોષ
Wikibooks-logo.svg પુસ્તકો
Wikiquote-logo.svg અવતરણો
Wikisource-logo.svg વિકિસોર્સ
Commons-logo.svg દ્રશ્ય-શ્રાવ્ય મિડિયા અને ચિત્રો
Wikinews-logo.svg સમાચાર
Wikiversity-logo-en.svg અભ્યાસ સામગ્રી